RESUMEN
Zinc alumotitanate sorbents with various compositions were prepared through sol-gel synthesis with the use of ethyl acetoacetate as a chelating agent. The formation and decomposition of chelates, providing insight into sol-gel process advancement, have been successfully monitored via 1H NMR, 13C NMR, and FTIR spectroscopy. It has been established that Al(OBus)3 and Ti(OBun)4 react completely with Eaa, forming chelates after 1 h, while after 24 h hydrolysis is already advanced. Hydrolysis is accelerated in the presence of Zn(NO2)3·6H2O, supplying the water needed for hydrolysis. In dried gels, the amount of ethyl acetoacetate is greatly reduced, and it is mainly present unbound. According to XRD analysis, samples with none or less titania are composed of layered double hydroxide, while in samples with greater amounts of titania, crystal nitrates are present. In all samples except those without Al, the spinel phase with variable composition crystallizes.
RESUMEN
Lowering the constitutive domains of semiconducting oxides to the nano-range has recently opened up the possibility of added benefit in the research area of sensing materials, in terms both of greater specific surface area and pore volume. Among such nanomaterials, ceria has attracted much attention; therefore, we chemically derived homogeneous ceria nanoparticle slurries. One set of samples was tape-casted onto a conducting glass substrate to form thin-films of various thicknesses, thereby avoiding demanding reaction conditions typical of physical depositions, while the other was pressed into pellets. Structural and microstructural features, along with electrical properties and derivative humidity-sensing performance of ceria thin-films and powders pressed into pellets, were studied in detail. Particular attention was given to solid-state impedance spectroscopy (SS-IS), under controlled relative humidity (RH) from 30%-85%, in a wide temperature and frequency range. Moreover, for the thin-film setup, measurements were performed in surface-mode and cross-section-mode. From the results, we extrapolated the influence of composition on relative humidity, the role of configuration and thin-film thickness on electrical properties, and derivative humidity-sensing performance. The structural analysis and depth profiling both point to monophasic crystalline ceria. Microstructure analysis reveals slightly agglomerated spherical particles and thin-films with low surface roughness. Under controlled humidity, the shape of the conductivity spectrum stays the same along with an increase in RH, and a notable shift to higher conductivity values. The relaxation is slow, as the thickness of the pellet slows the return of conductivity values. The increase in humidity has a positive effect on the overall DC conductivity, similar to the temperature effect for semiconducting behavior. As for the surface measurement setup, the thin-film thickness impacts the shape of the spectra and electrical processes. The surface measurement setup turns out to be more sensitive to relative humidity changes, emphasized with higher RH, along with an increase in thin-film thickness. The moisture directly affects the conductivity spectra in the dispersion part, i.e., on the localized short-range charge carriers. Moisture sensitivity is a reversible process for thin-film samples, in contrast to pellet form samples.
RESUMEN
The simultaneous administration of sulfasalazine and folic acid is regular practice in the therapy of inflammatory bowel diseases in order to maintain sufficient folate concentration in patients. Having multiple drugs in the therapy increases the possibility of patients failing adherence, thus unintentionally endangering their health. A fixed-dose combination of sulfasalazine and folic would simplify the classical polytherapeutic approach; however, the physicochemical compatibility investigation of two active pharmaceutical ingredients plays an important role in the development of such a product. In this work, various analytical tools were used to determine the physicochemical compatibility of sulfasalazine and folic acid. For the evaluation of chemical compatibility, infrared spectroscopy in combination with advanced statistical methods, such as the principal component analysis and cluster analysis, were used, whilst a simultaneous thermogravimetry/differential thermal analysis gave us an insight into the physical compatibility of two drugs. Isothermal stress testing, forced degradation and dissolution studies, followed by the analysis with a developed chromatographic method for the monitoring of folic acid, sulfasalazine and two of its related impurities, sulfapyridine and salicylic acid, gave us an insight into its chemical compatibility. The combination of the results obtained from the used techniques implies a satisfactory physicochemical compatibility between sulfasalazine and folic acid, which opens the path to the development of the proposed fixed-dose combination.
RESUMEN
Pure and doped vanadia (VO2, V0.98Zr0.02O2, V0.98Ce0.02O2) samples were prepared by wet chemistry synthesis from vanadyl glycolate intermediate phase and tape casted into films. Combining in-operando grazing incidence synchrotron X-ray diffraction and Raman spectroscopy, we studied the structural evolution of the films under isothermal conditions. The setup allowed assessment of the thermochromic functionality with continuous monitoring of the monoclinic to tetragonal transition in pure and doped vanadia phases, responsible for the transmission and reflection of light in the infrared part of the solar spectrum. The materials characterisation by X-ray diffraction beamline (MCX) goniometer demonstrated ideal performance, combining flexible geometry, high resolution, and the potential to accommodate the multi-channel equipment for in-operando characterisation. This method proved viable for evaluating the relevant structural and physical, and thereof functional properties of these systems. We revealed that dopants reduce the transition temperature by 5 °C on average. The synthetic route of the films was held responsible for the observed phase separation. The more favourable behaviour of cerium-doped sample was attributed to cerium alkoxide behaviour. In addition, structural, microstructural, thermal, and spectroscopic characterisation on powder samples was performed to gain more insight into the development of the phases that are responsible for thermochromic features in a broader range of doping ratios. The influence of the dopants on the extent of the thermochromic transition (transmission to reflection hysteresis) was also evaluated using (micro) structural, thermal and spectroscopic methods of powder samples. Characterisations showed that zirconium doping in 2, 4, and 6 mol% significantly influenced the phase composition and morphology of the precursor. Vanadium oxides other than VO2 can easily crystallise; however, a thermal treatment regime that allowed crystallisation of VO2 as a single phase was established.