Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 14(26): 18617-18645, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38863825

RESUMEN

In this review, the classification of magnetic materials exhibiting magnetoresistive properties is the focus of discussion because each material possesses different magnetic and electrical properties that influence the resulting magnetoresistance (MR) values. These properties depend on the structure and mechanism of the material. In this overview, the classification of magnetic materials with different structures is examined in several material groups, including the following: (1) perovskite structure (ABO3), (2) alloy, (3) spinel structure, and (4) Kagome magnet. This review summarizes the results of each material's properties based on experimental findings, and serves as a reference for studying the characteristics of each material.

2.
Phys Chem Chem Phys ; 26(26): 18343-18367, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912550

RESUMEN

This study investigates the effect of A-site disorder, characterized by the average ionic radius (〈rA〉) and the cation mismatch (σ2), on the structural, magnetic, critical behavior, and magnetic entropy changes in La0.7(Ba,Ca,Sr)0.3MnO3 manganites with trisubstituted Ba, Ca, and Sr. The sol-gel method was used to prepare polycrystalline samples. All series of compounds crystallize in rhombohedral symmetry with the R3̄c space group. A linear relationship between lattice parameters, unit cell volume, and 〈rA〉 was observed. This reveals an unusual behavior in the correlation between 〈rA〉 and σ2 concerning magnetic properties, which is attributed to the complex simultaneous trisubstitution of divalent ions. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were utilized to validate the chemical composition of compounds. All the samples crystallized in rhombohedral symmetry, and the lattice parameters increased continuously with increasing 〈rA〉. A-site disorder causes distortions in the Mn-O bond length and Mn-O-Mn bond angle in the MnO6 octahedral structure, which influences the double-exchange interaction and electronic bandwidth (W). The Curie temperature (TC) increases linearly with increasing W. The critical behavior around TC for all the samples was investigated by determining the values of the critical exponents (ß, γ, and δ) using the modified Arrott plot (MAP) method. The estimated critical exponents show that the unconventional model establishes a short-range ferromagnetic order. The maximum magnetic entropy change (-ΔSM) was obtained with the lowest 〈rA〉 and σ2 value. The analysis of the critical behavior and universal curve indicates a second-order phase transition (SOPT) nature for all samples.

3.
Phys Chem Chem Phys ; 26(20): 14476-14504, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38726818

RESUMEN

In the pursuit of a clean and environmentally friendly future, magnetic refrigerator technology based on the magnetocaloric effect has been proposed as a replacement for conventional refrigeration technologies characterized by inefficient energy use, greenhouse gas emissions, and ozone depletion. This paper presents an in-depth exploration of the current state of research on magnetocaloric effect (MCE) materials by, examining various types of MCE materials and their respective potentials. The focus is particularly directed towards perovskite manganite materials because of their numerous advantages over other materials. These advantages include a wide working temperature range, easily adjustable Curie temperature around room temperature, excellent chemical stability, cost-effective production processes, negligible magnetic and thermal hysteresis properties, as well as competitive values for -ΔSM and ΔTad compared to other materials. Additionally, crucial parameters defining the MCE properties of perovskite manganite materials are comprehensively discussed, both at a fundamental level and in detail.

4.
R Soc Open Sci ; 10(6): 230247, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37351492

RESUMEN

A pure-phase Cu2O film photocatalyst was successfully prepared by the electrodeposition technique from a non-pH-adjusted solution. To investigate the phase evolution and photocatalytic activity of the film, the electrodeposition was conducted at different deposition temperatures. Photocatalytic activity of the films was evaluated from methylene blue (MB) dye degradation. The Cu2O phase initially appeared at room temperature and its fraction was found to increase with increasing the deposition temperature, while the impurity phase was successfully diminished. A pure Cu2O film with a narrow optical bandgap energy of 1.96 eV was obtained at 75°C. The multi-faceted crystals were found to form at 45°C and became a truncated octahedral structure that possessed {111} and {100} facets as deposition temperature further increased. A preferred orientation growth of {110} facet, which is known to possess a relatively high surface energy, was produced at 75°C. The performance of MB photodegradation enhanced gradually by increasing the deposition temperature. The increase of photocatalytic activity could be attributed to the rise of photoelectrochemical response and the decrease of resistance charge transfer because of narrowing bandgap energy, increasing Cu2O fraction, and growing a relatively high catalytic activity facet which had escalated redox reaction that decomposed MB at the photocatalyst-solution interface.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34947799

RESUMEN

The nano-size effects of high-Tc cuprate superconductor La2-xSrxCuO4 with x = 0.20 are investigated using X-ray diffractometry, Transmission electron microscopy, and muon-spin relaxation (µSR). It is investigated whether an increase in the bond distance of Cu and O atoms in the conducting layer compared to those of the bulk state might affect its physical and magnetic properties. The µSR measurements revealed the slowing down of Cu spin fluctuations in La2-xSrxCuO4 nanoparticles, indicating the development of a magnetic correlation at low temperatures. The magnetic correlation strengthens as the particle size reduces. This significantly differs from those observed in the bulk form, which show a superconducting state below Tc. It is indicated that reducing the particle size of La2-xSrxCuO4 down to nanometer size causes the appearance of magnetism. The magnetism enhances with decreasing particle size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA