RESUMEN
Background: A transcatheter edge-to-edge repair (TEER) is disseminating gradually as a treatment for primary and secondary mitral regurgitation (MR) in patients with high surgical risk. In performing TEER, securing a safe access route is crucial. We report a case with a challenging access route due to the presence of a double inferior vena cava (IVC) and the patient's small body habitus. Case summary: An 84-year-old female presented with congestive heart failure due to severe MR. Despite receiving optimal medical therapy, her symptoms did not improve significantly. Transcatheter edge-to-edge repair was deemed challenging due to her extremely small body habitus [height: 131â cm; body surface area: 1.17â m2] and the presence of double IVC. However, considering her inoperable risk for surgical repair, she underwent TEER after a multidisciplinary heart team discussion. The steering guide catheter (SGC) encountered resistance, but gradual advancement and use of a bougie with a large bore sheath dilator successfully delivered the SGC to the right atrium. Following the TEER, there was a significant improvement in the symptoms. Discussion: Extremely small venous system in a small patient with double IVC presented a unique technical hurdle. Transcatheter edge-to-edge repair is potentially feasible even in such a patient by cautiously applying the technique described.
RESUMEN
BACKGROUND: Glomerular lipidosis is a rare histological feature presenting the extensive glomerular accumulation of lipids with or without histiocytic infiltration, which develops under various conditions. Among its various etiologies, macrophage activation syndrome (MAS) is a condition reported to be associated with histiocytic glomerular lipidosis. Here we describe the first case of glomerular lipidosis observed in a renal allograft that histologically mimicked histiocytic glomerulopathy owing to MAS. CASE PRESENTATION: A 42-year-old man underwent successful living-donor kidney transplantation. However, middle-grade proteinuria and increased serum triglyceride levels indicative of type V hyperlipidemia developed rapidly thereafter. An allograft biopsy performed 6 months after the transplantation showed extensive glomerular infiltration of CD68+ foam cells (histiocytes) intermingled with many CD3+ T-cells (predominantly CD8+ cells). Furthermore, frequent contact between glomerular T-cells and histiocytes, and the existence of activated CD8+ cells (CD8+, HLA-DR+ cells) were observed by double immunostaining. There was no clinicopathological data suggesting lipoprotein glomerulopathy or lecithin cholesterol acyltransferase deficiency, both of which are well-known causes of glomerular lipidosis. The histological findings were relatively similar to those of histiocytic glomerulopathy caused by MAS. As systemic manifestations of MAS, such as fever, pancytopenia, coagulation abnormalities, hyperferritinemia, increased liver enzyme levels, hepatosplenomegaly, and lymphadenopathy were minimal, this patient was clinicopathologically diagnosed as having renal-limited MAS. Although optimal treatment strategies for MAS in kidney transplant patients remains unclear, we strengthened lipid-lowering therapy using pemafibrate, without modifying the amount of immunosuppressants. Serum triglyceride levels were normalized with this treatment; however, the patient's extensive proteinuria and renal dysfunction did not improve. Biopsy analysis at 1 year after the transplantation demonstrated the disappearance of glomerular foamy changes, but the number of glomerular infiltrating cells remained similar. CONCLUSION: To our knowledge, this is the first reported case of glomerular lipidosis in a transplanted kidney. Increased interaction-activation of histiocytes (macrophages) and CD8+ T-cells, the key pathogenic feature of MAS, was observed in the glomeruli of this patient, who did not demonstrate overt systemic manifestations, suggesting a pathological condition of renal-limited MAS. The clinical effects of triglyceride-lowering therapy were limited, suggesting that hypertriglyceridemia was not the cause of but rather may be a consequence of renal-limited MAS.
Asunto(s)
Enfermedades Renales , Trasplante de Riñón , Lipidosis , Síndrome de Activación Macrofágica , Masculino , Humanos , Adulto , Síndrome de Activación Macrofágica/etiología , Síndrome de Activación Macrofágica/complicaciones , Trasplante de Riñón/efectos adversos , Linfocitos T CD8-positivos , Riñón/patología , Enfermedades Renales/patología , Proteinuria/complicaciones , TriglicéridosRESUMEN
BACKGROUND: Although targeted treatments against human epidermal growth factor receptor 2 (HER2) have improved survival in patients with metastatic HER2-positive breast cancer, long and repeated treatment is time-consuming and costly for patients. To reduce these burdens, we developed ex vivo gene-transduced adipocytes that secrete anti-HER2 antibodies and evaluated their anti-tumor effects. METHODS: Ceiling culture-derived proliferative adipocytes (ccdPA) secreting anti-HER2 antibody against domain IV receptors: TRA-ccdPA, and domain II receptors: PER-ccdPA, were constructed using a plasmid lentivirus. Delivery of secreted antibody and its specific binding to HER2 breast cancer were evaluated in vitro and in vivo. To optimize antibody production from ccdPA, different conditions of ccdPA implantation were examined. Anti-tumor efficacy was evaluated in HER2-positive-cancer-inoculated nude mice. RESULTS: Anti-HER2 antibody against domain II was identified in supernatants from PER-ccdPAs. The optimal method to achieve the highest concentration of antibody in mouse sera was injecting differentiated ccdPA cells into the mammary fat pad. Antibody in supernatants from PER-ccdPAs bound to the surface of HER2-positive breast cancer cells similar to pertuzumab. Antibodies in mouse sera were delivered to HER2-positive breast cancer tumors and tumor necrosis was observed microscopically. One-time administration of combined TRA-ccdPAs and PER-ccdPAs produced antibody continuously in mouse sera, and anti-tumor effects were maintained for the duration of this study in xenograft models. Furthermore, combination therapy significantly suppressed tumor growth compared with a single administration. CONCLUSION: Ex vivo gene-transduced adipocytes might be useful for cell-based gene therapy. This system may be a platform for various antibody therapies.
Asunto(s)
Neoplasias de la Mama , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Neoplasias de la Mama/metabolismo , Ratones Desnudos , Xenoinjertos , Línea Celular Tumoral , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Terapia Genética , Adipocitos/metabolismo , Adipocitos/patología , TrastuzumabRESUMEN
Background: Familial lecithin: cholesterol acyltransferase (LCAT) deficiency (FLD) is a severe inherited disease without effective treatment. Patients with FLD develop severe low HDL, corneal opacity, hemolytic anemia, and renal injury. Objective: We developed genetically modified adipocytes (GMAC) secreting LCAT (LCAT-GMAC) for ex vivo gene therapy. GMACs were prepared from the patient's adipocytes to express LCAT by retroviral gene transduction to secrete functional enzymes. This study aimed to evaluate the safety and efficacy of LCAT-GMAC implantation in an FLD patient. Methods: Proliferative preadipocytes were obtained from a patient using a ceiling culture and retrovirally transduced with LCAT. After obtaining enough cells by expansion culture of the transduced cells, the resulting LCAT-GMACs were implanted into a patient with FLD. To evaluate the safety and efficacy, we analyzed the outcome of the autologous implantation for 24 weeks of observation and subsequent 240 weeks of the follow-up periods. Results: This first-in-human autologous implantation of LCAT-GMACs was shown to be safe by evaluating adverse events. The LCAT-GMAC implantation increased serum LCAT activity by approximately 50% of the baseline and sustained over three years. Consistent with increased LCAT activity, intermediate-density lipoprotein (IDL) and free cholesterol levels of the small and very small HDL fractions decreased. We found the hemoglobin/haptoglobin complex in the hemolyzed pre-implantation sera of the patient. After one week of the implantation, the hemoglobin/haptoglobin complex almost disappeared. Immediately after the implantation, the patient's proteinuria decreased temporarily to mild levels and gradually increased to the baseline. At 48 weeks after implantation, the patient's proteinuria deteriorated with the development of mild hypertension. By the treatment with antihypertensives, the patient's blood pressure normalized. With the normalization of blood pressure, the proteinuria rapidly decreased to mild proteinuria levels. Conclusions: LCAT-GMAC implantation in a patient with FLD is shown to be safe and appears to be effective, in part, for treating anemia and proteinuria in FLD.
RESUMEN
The proband was a 53-year-old Japanese woman. Despite having no atherosclerotic vascular lesions on a physiological examination, markedly decreased levels of high-density lipoprotein (HDL) were always noted at her annual medical checkup. She also had corneal opacities but neither xanthoma nor tonsillar hypertrophy. A biochemical examination showed decreased levels of both apolipoprotein A-I (apoA-I) (<5 mg/dL) and lecithin-cholesterol acyltransferase (LCAT) activity. Her brother and son also had low concentrations of HDL-cholesterol, suggesting the presence of a genetic abnormality. Therefore, a sequence analysis of the genes for ABCA1, LCAT and apoA-I proteins was performed in the proband. The analysis of the APOA1 gene revealed a novel homozygous two-nucleotide deletion in exon 4 (c.614_615delTC), which causes a frameshift after residue 205 of the apoA-I protein (p.Leu205fs). Since no mutation has been found in the ABCA1 or LCAT gene, functional abnormalities of the carboxyl-terminal region of the apoA-I protein in lipid binding might have caused the low HDL-cholesterol levels and decreased LCAT activity, possibly associated with corneal opacities but not premature CAD, in the patient.
Asunto(s)
Opacidad de la Córnea , Deficiencia de la Lecitina Colesterol Aciltransferasa , Apolipoproteína A-I/genética , HDL-Colesterol/genética , Opacidad de la Córnea/diagnóstico , Opacidad de la Córnea/genética , Femenino , Mutación del Sistema de Lectura , Humanos , Deficiencia de la Lecitina Colesterol Aciltransferasa/diagnóstico , Lipoproteínas HDL/genética , Masculino , Persona de Mediana Edad , Fosfatidilcolina-Esterol O-Aciltransferasa/genéticaRESUMEN
Backgrounds: Despite the absolute need for life-long treatment of inherited and genetic diseases, there has been little effort to develop such treatments for most of these conditions due to their rarity. Familial lecithin:cholesterol acyltransferase (LCAT) deficiency is recognized as one such orphan disease. We have been developing an adipocyte-based ex vivo gene therapy/regenerative medicine, a novel methodology that differs from the adeno-associated virus-mediated in vivo gene therapy or ex vivo gene-transduced hematopoietic cell therapy, to treat familial LCAT deficiency. Recently, a first-in-human (FIH) clinical study was conducted under the Act on Securement of Safety of Regenerative Medicine, wherein a patient with familial LCAT deficiency was treated. To obtain approval to put this treatment into practical use, a clinical trial has been designed with reference to the FIH clinical study. Methods: An interventional, open-label, unblinded dose-escalation trial was planned, referring to previous FIH clinical study. The trial aims to evaluate the safety of the investigational product in relation to the characteristics of the investigational product (ex vivo gene/cell therapy product by retroviral vector-mediated LCAT gene transduction) using two doses, and the efficacy of the treatment will be evaluated exploratively. A total of three patients will be enrolled sequentially and followed for 24 weeks after administration. This study is designed as a multicenter trial, with Chiba University Hospital administering and evaluating the safety/efficacy of the investigational products at the prescribed visit. Conclusion: This clinical trial is expected to facilitate the provision of lifelong treatment to many patients with LCAT deficiency. Trial registration number: Japan Registry of Clinical Trials (jRCT2033200096).
RESUMEN
The goal of surgery for degenerative spine disease is to decompress nerves; however, extensive spinal decompression may compromise spinal stability. Therefore, spinal fusion surgery is performed to immediately stabilize such anatomical disruption during a short hospital stay and to allow quick recuperation. Recently, implants such as pedicle screws and intervertebral cages have been regularly used in lumbar fusion surgery. These implants are used to reconstruct the functional unit of the failed spine, correcting any deformity if necessary and maintaining its fixation until complete bone fusion. In other words, the essence of spinal fusion surgery is not the placement of implants but the induction of bone fusion. Therefore, each case requires a carefully developed surgical plan to achieve sufficient bone fusion for spinal stabilization. In this article, we describe the mechanism and the surgical technique for achieving reliable interbody fusion.
Asunto(s)
Tornillos Pediculares , Enfermedades de la Columna Vertebral , Fusión Vertebral , Descompresión Quirúrgica , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Resultado del TratamientoRESUMEN
Ceiling culture-derived preadipocytes (ccdPAs) and adipose-derived stem cells (ASCs) can be harvested from human subcutaneous fat tissue using the specific gravity method. Both cell types possess a similar spindle shape without lipid droplets. We previously reported that ccdPAs have a higher adipogenic potential than ASCs, even after a 7-wk culture. We performed a genome-wide epigenetic analysis to examine the mechanisms contributing to the adipogenic potential differences between ccdPAs and ASCs. Methylation analysis of cytosines followed by guanine (CpG) using a 450-K BeadChip was performed on human ccdPAs and ASCs isolated from three metabolically healthy females. Chromatin immunoprecipitation sequencing was performed to evaluate trimethylation at lysine 4 of histone 3 (H3K4me3). Unsupervised machine learning using t-distributed stochastic neighbor embedding to interpret 450,000-dimensional methylation assay data showed that the cells were divided into ASC and ccdPA groups. In Kyoto Encyclopedia of Genes and Genomes pathway analysis of 1,543 genes with differential promoter CpG methylation, the peroxisome proliferator-activated receptor (PPAR) and adipocytokine signaling pathways ranked in the top 10 pathways. In the PPARγ gene, H3K4me3 peak levels were higher in ccdPAs than in ASCs, whereas promoter CpG methylation levels were significantly lower in ccdPAs than in ASCs. Similar differences in promoter CpG methylation were also seen in the fatty acid-binding protein 4 and leptin genes. In conclusion, we analyzed the epigenetic status of adipogenesis-related genes as a potential mechanism underlying the differences in adipogenic differentiation capability between ASCs and ccdPAs.
Asunto(s)
Adipocitos/metabolismo , Adipogénesis/genética , Adipoquinas/genética , Epigénesis Genética , Células Madre Mesenquimatosas/metabolismo , PPAR gamma/genética , Adipocitos/clasificación , Adipocitos/citología , Adipoquinas/metabolismo , Islas de CpG , Metilación de ADN , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Histonas/genética , Histonas/metabolismo , Humanos , Leptina/genética , Leptina/metabolismo , Mamoplastia/métodos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/cirugía , Células Madre Mesenquimatosas/clasificación , Células Madre Mesenquimatosas/citología , Especificidad de Órganos , PPAR gamma/metabolismo , Cultivo Primario de Células , Grasa Subcutánea/citología , Grasa Subcutánea/metabolismo , Aprendizaje Automático no SupervisadoRESUMEN
Lecithin cholesterol acyltransferase (LCAT) is a lipid-modification enzyme that catalyzes the transfer of the acyl chain from the second position of lecithin to the hydroxyl group of cholesterol (FC) on plasma lipoproteins to form cholesteryl acylester and lysolecithin. Familial LCAT deficiency is an intractable autosomal recessive disorder caused by inherited dysfunction of the LCAT enzyme. The disease appears in two different phenotypes depending on the position of the gene mutation: familial LCAT deficiency (FLD, OMIM 245900) that lacks esterification activity on both HDL and ApoB-containing lipoproteins, and fish-eye disease (FED, OMIM 136120) that lacks activity only on HDL. Impaired metabolism of cholesterol and phospholipids due to LCAT dysfunction results in abnormal concentrations, composition and morphology of plasma lipoproteins and further causes ectopic lipid accumulation and/or abnormal lipid composition in certain tissues/cells, and serious dysfunction and complications in certain organs. Marked reduction of plasma HDL-cholesterol (HDL-C) and corneal opacity are common clinical manifestations of FLD and FED. FLD is also accompanied by anemia, proteinuria and progressive renal failure that eventually requires hemodialysis. Replacement therapy with the LCAT enzyme should prevent progression of serious complications, particularly renal dysfunction and corneal opacity. A clinical research project aiming at gene/cell therapy is currently underway.
Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Deficiencia de la Lecitina Colesterol Aciltransferasa , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Opacidad de la Córnea/etiología , Opacidad de la Córnea/prevención & control , Humanos , Japón/epidemiología , Deficiencia de la Lecitina Colesterol Aciltransferasa/sangre , Deficiencia de la Lecitina Colesterol Aciltransferasa/epidemiología , Deficiencia de la Lecitina Colesterol Aciltransferasa/fisiopatología , Deficiencia de la Lecitina Colesterol Aciltransferasa/terapia , Lipoproteínas/sangre , Lipoproteínas/metabolismo , Mutación , Fosfatidilcolina-Esterol O-Aciltransferasa/farmacología , Fosfolípidos/sangre , Fosfolípidos/metabolismo , Insuficiencia Renal/etiología , Insuficiencia Renal/prevención & controlRESUMEN
Extract of Cyclolepis genistoides D. Don (vernacular name Palo azul; Palo) are traditionally consumed in the Republic of Paraguay in South America for the treatment of diabetes and kidney disease, and is sold in Japan as dietary supplement. This study aimed to elucidate the mechanism of anti-diabetes activity of Palo, especially focused on insulin resistance. Palo promoted adipocytes differentiation and regulated adipokine profiles in 3T3-L1 adipocytes by modulation of PPARγ, a major regulator of adipose differentiation. Human adipocyte showed almost similar profile with 3T3-L1 against Palo treatment. Furthermore, Palo treatment (250 or 1000â mg/kg) was performed with C57BL/6J mice for 14 weeks, being fed high-fat-diet (HFD60) simultaneously. Palo 250â mg/kg exhibited a tendency to decrease subcutaneous adipose volume along with increase of PPARγ and its target, adiponectin mRNA expression. In addition, as the other insulin targeted cell, effect on muscle differentiation was examined. Palo increased differentiation of C2C12 mouse muscle myoblasts by increase of IGF-1, myogenin, and myosine heavy chain (MHC) as well as 5'-AMP-activated protein kinase (AMPK) activation. Palo subsequently promoted myotube formation under differentiation condition. From the above, it was clarified that Palo acts variously on the differentiation and maturation of both adipocytes and muscle cells, and from the viewpoint of the regulatory mechanism for adipocytes, PPARγ-inducing action was shown to be a mechanism that acts across species.
Asunto(s)
Diabetes Mellitus , Etanol , Animales , Diferenciación Celular , Humanos , Japón , Ratones , Ratones Endogámicos C57BL , Paraguay , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
The acyltransferase LCAT mediates FA esterification of plasma cholesterol. In vitro studies have shown that LCAT also FA-esterifies several oxysterols, but in vivo evidence is lacking. Here, we measured both free and FA-esterified forms of sterols in 206 healthy volunteers and 8 individuals with genetic LCAT deficiency, including familial LCAT deficiency (FLD) and fish-eye disease (FED). In the healthy volunteers, the mean values of the ester-to-total molar ratios of the following sterols varied: 4ß-hydroxycholesterol (4ßHC), 0.38; 5,6α-epoxycholesterol (5,6αEC), 0.46; 5,6ß-epoxycholesterol (5,6ßEC), 0.51; cholesterol, 0.70; cholestane-3ß,5α,6ß-triol (CT), 0.70; 7-ketocholesterol (7KC), 0.75; 24S-hydroxycholesterol (24SHC), 0.80; 25-hydroxycholesterol (25HC), 0.81; 27-hydroxycholesterol (27HC), 0.86; and 7α-hydroxycholesterol (7αHC), 0.89. In the individuals with LCAT deficiency, the plasma levels of the FA-esterified forms of cholesterol, 5,6αEC, 5,6ßEC, CT, 7αHC, 7KC, 24SHC, 25HC, and 27HC, were significantly lower than those in the healthy volunteers. The individuals with FLD had significantly lower FA-esterified forms of 7αHC, 24SHC, and 27HC than those with FED. It is of note that, even in the three FLD individuals with negligible plasma cholesteryl ester, substantial amounts of the FA-esterified forms of 4ßHC, 5,6αEC, 7αHC, 7KC, and 27HC were present. We conclude that LCAT has a major role in the FA esterification of many plasma oxysterols but contributes little to the FA esterification of 4ßHC. Substantial FA esterification of 4ßHC, 5,6αEC, 7αHC, 7KC, and 27HC is independent of LCAT.
Asunto(s)
Hidroxicolesteroles/sangre , Hidroxicolesteroles/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Adulto , Estudios de Casos y Controles , Esterificación , Femenino , Humanos , Masculino , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Adulto JovenRESUMEN
PURPOSE: Although recent advances in molecular target therapy have improved the survival of breast cancer patients, high cost and frequent hospital visits result in both societal and individual burden. To reduce these problems, it has been proposed to produce antibodies in vivo. Here, we constructed gene-transduced human ceiling culture-derived proliferative adipocytes secreting anti-HER2 antibody (HER2-ccdPAs) and evaluated their ability to secrete antibody and mediate an anti-tumor effect. METHODS: Plasmid lentivirus was used as a recipient for anti-HER2 antibody cDNA and transduced into human proliferative adipocyte. Secretory antibody expression was evaluated by ELISA and western blot. Specific binding of secretory antibody to HER2 was examined by immunofluorescence analysis. Direct and indirect anti-tumor effects of supernatants from HER2-ccdPAs were evaluated using BT474 (HER2+) and MDA-MB-231 (HER2-) breast cancer cell lines. Additionally, whether adipocyte differentiation affects antibody secretion was investigated using supernatant collected from different cell maturation states. RESULTS: Anti-HER2 antibody was identified in the supernatant from HER2-ccdPAs and its production increased with the differentiation into mature adipocyte. Antibodies in supernatants from HER2-ccdPAs bound to HER2-positive breast cancer cells similar to trastuzumab. Supernatant from HER2-ccdPAs inhibited the proliferation of BT474 but not MDA-MB-231 cells, and downregulated AKT phosphorylation in BT474 cells compared with controls. Supernatants from HER2-ccdPAs also had an indirect anti-tumor effect on BT474 cells through ADCC. Additionally, Single inoculation of HER2-ccdPAs showed an anti-tumor effect in BT474 xenograft model. CONCLUSIONS: HER2-ccdPAs might be useful for cell-based gene therapy. This system could be a platform for various antibody therapies.
Asunto(s)
Adipocitos/metabolismo , Anticuerpos Monoclonales/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-2/antagonistas & inhibidores , Adipocitos/citología , Animales , Anticuerpos Monoclonales/metabolismo , Apoptosis , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación , Receptor ErbB-2/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Adipose-derived stem cells and ceiling culture-derived preadipocytes can be harvested from subcutaneous adipose tissue. Little is known about the epigenetic differences, which may contribute to differences in osteogenic potential, between these cell types. The purpose of this study was to address the osteogenic potential and underlying epigenetic status of adipose-derived stem cells and ceiling culture-derived preadipocytes. METHODS: Adipose-derived stem cells and ceiling culture-derived preadipocytes were cultured from abdominal subcutaneous fat tissues of four metabolically healthy, lean female patients. After 7 weeks of culture, cellular responses to osteogenic differentiation media were examined. To evaluate the osteogenic potentials of undifferentiated adipose-derived stem cells and ceiling culture-derived preadipocytes, two types of epigenetic assessment were performed using next-generation sequencing: DNA methylation assays with the Human Methylation 450K BeadChip, and chromatin immunoprecipitation assays for trimethylation of histone H3 at lysine 4. RESULTS: Human ceiling culture-derived preadipocytes showed greater osteogenic differentiation ability than did adipose-derived stem cells. In an epigenetic survey of the promoters of four osteogenic regulator genes (RUNX2, SP7, ATF4, and BGLAP), the authors found a general trend toward decreased CpG methylation and increased trimethylation of histone H3 at lysine 4 levels in ceiling culture-derived preadipocytes as compared to adipose-derived stem cells, indicating that these genes were more likely to be highly expressed in ceiling culture-derived preadipocytes. CONCLUSIONS: The surveyed epigenetic differences between adipose-derived stem cells and ceiling culture-derived preadipocytes were consistent with the observed differences in osteogenic potential. These results enhance the authors' understanding of these cells and will facilitate their further application in regenerative medicine.
Asunto(s)
Adipocitos/citología , Adipocitos/fisiología , Epigénesis Genética/fisiología , Osteogénesis/fisiología , Células Madre/citología , Células Madre/fisiología , Grasa Subcutánea/citología , Adulto , Células Cultivadas , Femenino , Humanos , Persona de Mediana EdadRESUMEN
BACKGROUND: Recessive inherited disorder lecithin-cholesterol acyltransferase (LCAT) deficiency causes severe hypocholesterolemia and nephrotic syndrome. Characteristic lipoprotein subfractions have been observed in familial LCAT deficiency (FLD) with renal damage. OBJECTIVE: We described a case of acquired LCAT deficiencies with literature review. METHODS: The lipoprotein profiles examined by gel permeation-high-performance liquid chromatography (GP-HPLC) and native 2-dimensional electrophoresis before and after prednisolone (PSL) treatment. RESULTS: Here we describe the case of a 67-year-old man with severely low levels of cholesterol. The serum LCAT activity was undetectable, and autoantibodies against it were detected. The patient developed nephrotic syndrome at the age of 70 years. Renal biopsy revealed not only membranous glomerulonephritis but also lesions similar to those seen in FLD. We initiated PSL treatment, which resulted in remission of the nephrotic syndrome. In GP-HPLC analysis, lipoprotein profile was similar to that of FLD although lipoprotein X level was low. Acquired LCAT deficiencies are extremely rare with only 7 known cases including ours. Patients with undetectable LCAT activity levels develop nephrotic syndrome that requires PSL treatment; cases whose LCAT activity levels can be determined may also develop nephrotic syndrome, but spontaneously recover. CONCLUSION: Lipoprotein X may play a role in the development of renal impairment in individuals with FLD. However, the effect might be less significant in individuals with acquired LCAT deficiency.
Asunto(s)
Deficiencia de la Lecitina Colesterol Aciltransferasa/diagnóstico , Fosfatidilcolina-Esterol O-Aciltransferasa/inmunología , Anciano , Antiinflamatorios/uso terapéutico , Autoanticuerpos/sangre , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Humanos , Riñón/patología , Deficiencia de la Lecitina Colesterol Aciltransferasa/tratamiento farmacológico , Deficiencia de la Lecitina Colesterol Aciltransferasa/inmunología , Lipoproteína X/sangre , Lipoproteínas/sangre , Masculino , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Prednisolona/uso terapéuticoRESUMEN
Despite the critical need for lifelong treatment of inherited and genetic diseases, there are no developmental efforts for most such diseases due to their rarity. Recent progress in gene therapy, including the approvals of two products (Glybera and Strimvelis) that may provide patients with sustained effects, has shed light on the development of gene therapy products. Most gene therapy products are based on either adeno-associated virus-mediated in vivo gene transfer to target tissues or administration of ex vivo gene-transduced hematopoietic cells. In such circumstances, there is room for different approaches to provide clinicians with other therapeutic options through a variety of principles based on studies not only to gain an understanding of the pathological mechanisms of diseases, but also to understand the physiological functions of target tissues and cells. In this review, we summarize recent progress in gene therapy-mediated enzyme replacement and introduce a different approach using adipocytes to enable lifelong treatment for intractable plasma protein deficiencies.
Asunto(s)
Adipocitos/metabolismo , Enfermedades Genéticas Congénitas/terapia , Adenosina Desaminasa/deficiencia , Adipocitos/citología , Adipocitos/trasplante , Agammaglobulinemia/patología , Agammaglobulinemia/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Dependovirus/genética , Terapia de Reemplazo Enzimático , Factor VIII/genética , Factor VIII/metabolismo , Enfermedades Genéticas Congénitas/patología , Terapia Genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Hemofilia A/terapia , Humanos , Enfermedades por Almacenamiento Lisosomal/terapia , Inmunodeficiencia Combinada Grave/patología , Inmunodeficiencia Combinada Grave/terapiaRESUMEN
Lipodystrophy is a rare condition that is often accompanied by one or more metabolic diseases. Here, we report a case of lipoatrophic diabetes induced by juvenile dermatomyositis. Although pioglitazone was not effective for lowering blood glucose levels, our observation suggested that it improved liver function slightly. The effectiveness of metreleptin for lowering blood glucose levels could not be determined, as we administered it in a short period. Liver biopsy showed burned-out non-alcoholic steatohepatitis. The present results show that the successful treatment of lipoatrophic diabetes induced by juvenile dermatomyositis requires an early diagnosis and therapeutic intervention.
RESUMEN
Atopic myelitis, a type of myelitis which appears in patients with elevated serum levels of immunoglobulin E (IgE), occurs more commonly in the cervical spinal cord, but this mechanism has not yet been elucidated. Herein, we experienced a case of atopic myelitis developed during the growth of cervical cavernous angioma caused by bleeding. A 37-year-old woman suffered from hand swelling caused by a house cat licking. At the same time when cavernous angioma had grown, she experienced a numbness in her four extremities, and multifocal peritumoral hyperintense spinal cord signals were seen. The diagnosis of atopic myelitis was made because we observed significantly elevated levels of specific IgE antibody to cat dander. Symptoms disappeared immediately after steroid pulse therapy. We subsequently resected a cavernous angioma, and eosinophil invasion was found inside it. This is the first case report of atopic myelitis which developed in association with spinal cord vascular lesions. A local blood-brain barrier breakdown due to hemorrhagic lesions of the spinal cord may have contributed to the onset of atopic myelitis.
RESUMEN
Human subcutaneous fat tissue consists of two layers, superficial adipose tissue (SAT) and deep adipose tissue (DAT). Some recent reports suggest that a disproportionate accumulation of DAT is related to obesity-associated metabolic complications. However, the differences in adipocyte function between SAT and DAT are unclear. To clarify the differences in human adipocyte characteristics between SAT and DAT, human ceiling culture-derived proliferative adipocytes (ccdPAs) were primary cultured from SAT and DAT of three lean female patients. Differences in adipogenic differentiation potential and sensitivity to exogenous adipogenic factors were examined. Epigenetic modification of the CpG island DNA methylation levels of genes related to adipogenesis was measured. In histological analyses, the mean adipocyte size in SAT was significantly larger than that in DAT (8,741 ± 416 vs. 7,732 ± 213 µm(2), P < 0.05). Primary cultured adipocytes from SAT showed significantly greater adipogenesis than did those of DAT. Sensitivity to partial adipogenic stimulation was significantly different between ccdPAs of SAT and DAT. Peroxisome proliferator-activated receptor-γ (PPAR-γ) protein expression and leptin protein secretion from ccdPAs were significantly higher in SAT than DAT. DNA methylation levels of PPAR-γ were significantly lower in ccdPAs of SAT than DAT. Adipocyte size was larger in SAT than DAT in vivo. This is consistent with the findings of an in vitro study that, compared with ccdPAs in DAT, ccdPAs in SAT have higher adipogenic potential and lower DNA methylation levels of PPAR-γ.
Asunto(s)
Adipocitos/metabolismo , Adipocitos/fisiología , Adipogénesis/fisiología , Metilación de ADN/fisiología , PPAR gamma/metabolismo , Grasa Subcutánea/metabolismo , Grasa Subcutánea/fisiología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiología , Adulto , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Islas de CpG/genética , Femenino , Humanos , Leptina/metabolismo , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/fisiopatologíaRESUMEN
Although protein replacement is an effective treatment for serum protein deficiencies such as diabetes and hemophilia, recombinant protein products are not available for all rare inherited diseases due to the instability of the recombinant proteins and/or to cost. Gene therapy is the most attractive option for treating patients with such rare diseases. To develop an effective ex vivo gene therapy-based protein replacement treatment requires recipient cells that differ from those used in standard gene therapy, which is performed to correct the function of the recipient cells. Adipose tissue is an expected source of proliferative cells for cell-based therapies, including regenerative medicine and gene transfer applications. Based on recent advances in cell biology and extensive clinical experience in transplantation therapy for adipose tissue, we focused on the mature adipocyte fraction, which is the floating fraction after collagenase digestion and centrifugation of adipose tissue. Proliferative adipocytes were propagated from the floating fraction by the ceiling culture technique. These cells are designated as ceiling culture-derived proliferative adipocytes (ccdPAs). We first focused on lecithin:cholesterol acyltransferase (LCAT) deficiency, an inherited metabolic disorder caused by lcat gene mutation, and ccdPAs as a therapeutic gene vehicle for LCAT replacement therapy. In our recent in vitro and animal model studies, we developed an adipose cell manipulation procedure using advanced gene transduction methods and transplantation scaffolds. We herein introduce the progress made in novel adipose tissue-based therapeutic strategies for the treatment of protein deficiencies and describe their future applications for other intractable diseases.
Asunto(s)
Adipocitos , Terapia Genética/métodos , Terapia Genética/tendencias , Deficiencia de la Lecitina Colesterol Aciltransferasa/terapia , Transducción Genética/métodos , Adipocitos/trasplante , Animales , Proteínas Sanguíneas/deficiencia , Técnicas de Cultivo de Célula , Diabetes Mellitus/terapia , Modelos Animales de Enfermedad , Hemofilia A/terapia , Humanos , Ratones , Proteínas RecombinantesRESUMEN
BACKGROUND: Short-segment posterior spinal instrumentation for thoracolumbar burst fracture provides superior correction of kyphosis by an indirect reduction technique, but it has a high failure rate. We investigated the clinical and radiological results of temporary short-segment pedicle screw fixation without augmentation performed for thoracolumbar burst fractures with the goal of avoiding treatment failure by waiting to see if anterior reconstruction was necessary. METHODS: We studied 27 consecutive patients with thoracolumbar burst fracture who underwent short-segment posterior instrumentation using ligamentotaxis with Schanz screws and without augmentation. Implants were removed approximately 1 year after surgery. Neurological function, kyphotic deformity, canal compromise, fracture severity, and back pain were evaluated prospectively. RESULTS: After surgery, all patients with neurological deficit had improvement equivalent to at least 1 grade on the American Spinal Injury Association impairment scale and had fracture union. Kyphotic deformity was reduced significantly, and maintenance of the reduced vertebra was successful even without vertebroplasty, regardless of load-sharing classification. Therefore, no patients required additional anterior reconstruction. Postoperative correction loss occurred because of disc degeneration, especially after implant removal. Ten patients had increasing back pain, and there are some correlations between the progression of kyphosis and back pain aggravation. CONCLUSION: Temporary short-segment fixation without augmentation yielded satisfactory results in reduction and maintenance of fractured vertebrae, and maintenance was independent of load-sharing classification. Kyphotic change was caused by loss of disc height mostly after implant removal. Such change might have been inevitable because adjacent endplates can be injured during the original spinal trauma. Kyphotic change after implant removal may thus be a limitation of this surgical procedure.