Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 12: e18136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346035

RESUMEN

The most important step in plant breeding is the correct selection of parents, and it would be wise to use heterotic groups for this. The purpose of this study is to analyse yield and its components as well as genetic diversity in line × tester wheat populations. It also seeks to present a coherent framework for the isolation of early superior families and the development of heterotic groups in bread wheat. F1 and F2 generations of 51 genotypes, including 36 combinations between 12 lines and three testers and 15 parents, were evaluated for yield and its components in a three-replication experiment according to the randomized block design. Line ×  tester analysis of variance, general and specific combining abilities, heterosis, heterobeltiosis and inbreeding depression were calculated. Heterotic groups created based on general and specific combining abilities were compared with each other. The results showed that there was sufficient genetic variation in the population and that further genetic calculations could be made. The selections made based on general and specific combining abilities, heterosis values and average performance of genotypes without heterotic grouping indicated different genotypes for each feature. The creation of heterotic groups made it possible to select genotypes that were superior in terms of all the criteria listed. It was concluded that heterotic groups created based on specific combining abilities may be more useful for breeding studies.


Asunto(s)
Variación Genética , Genotipo , Vigor Híbrido , Fitomejoramiento , Triticum , Triticum/genética , Vigor Híbrido/genética , Fitomejoramiento/métodos , Variación Genética/genética , Hibridación Genética
2.
PeerJ ; 12: e17931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184382

RESUMEN

Background: Drought is the most significant factor limiting maize production, given that maize is a crop with a high water demand. Therefore, studies investigating the mechanisms underlying the drought tolerance of maize are of great importance. There are no studies comparing drought tolerance among economically important subspecies of maize. This study aimed to reveal the differences between the physio-biochemical, enzymatic, and molecular mechanisms of drought tolerance in dent (Zea mays indentata), popcorn (Zea mays everta), and sugar (Zea mays saccharata) maize under control (no-stress), moderate, and severe drought stress. Methods: Three distinct irrigation regimes were employed to assess the impact of varying levels of drought stress on maize plants at the V14 growth stage. These included normal irrigation (80% field capacity), moderate drought (50% field capacity), and severe drought (30% field capacity). All plants were grown under controlled conditions. The following parameters were analyzed: leaf relative water content (RWC), loss of turgidity (LOT), proline (PRO) and soluble protein (SPR) contents, membrane durability index (MDI), malondialdehyde (MDA), and hydrogen peroxide (H2O2) content, the antioxidant enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Additionally, the expression of heat shock proteins (HSPs) was examined at the transcriptional and translational levels. Results: The effects of severe drought were more pronounced in sugar maize, which had a relatively high loss of RWC and turgor, membrane damage, enzyme activities, and HSP90 gene expression. Dent maize, which is capable of maintaining its RWC and turgor in both moderate and severe droughts, and employs its defense mechanism effectively by maintaining antioxidant enzyme activities at a certain level despite less MDA and H2O2 accumulation, exhibited relatively high drought tolerance. Despite the high levels of MDA and H2O2 in popcorn maize, the up-regulation of antioxidant enzyme activities and HSP70 gene and protein expression indicated that the drought coping mechanism is activated. In particular, the positive correlation of HSP70 with PRO and HSP90 with enzyme activities is a significant result for studies examining the relationships between HSPs and other stress response systems. The discrepancies between the transcriptional and translational findings provide an opportunity for more comprehensive investigations into the role of HSPs in stress conditions.


Asunto(s)
Sequías , Zea mays , Zea mays/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Agua/metabolismo , Especificidad de la Especie , Antioxidantes/metabolismo
3.
PeerJ ; 11: e15485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37312880

RESUMEN

Increasing grain quality and nutritional value along with yield in bread wheat is one of the leading breeding goals. Selection of genotypes with desired traits using traditional breeding selection methods is very time-consuming and often not possible due to the interaction of environmental factors. By identifying DNA markers that can be used to identify genotypes with desired alleles, high-quality and bio-fortified bread wheat production can be achieved in a short time and cost-effectively. In the present study, 134 doubled haploid (DH) wheat lines and their four parents were phenotypically evaluated for yield components (spike characteristics), quality parameters, and grain Fe and Zn concentrations in two successive growing seasons. At the same time, ten genic simple sequence repeats (SSR) markers linked to genes related to the traits examined were validated and subsequently used for molecular characterization of trait-specific candidate genotypes. Significant genotypic variations were determined for all studied traits and many genotypes with desired phenotypic values were detected. The evaluation performed with 10 SSR markers revealed significant polymorphism between genotypes. The polymorphic information content (PIC) values of 10 markers ranged from 0.00 to 0.87. Six out of 10 SSRs could be more effective in representing the genotypic differentiation of the DH population as they demonstrated the highest genetic diversity. Both Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering and STRUCTURE analyses divided 138 wheat genotypes into five (K = 5) main groups. These analyzes were indicative of genetic variation due to hybridization and segregation in the DH population and the differentiation of the genotypes from their parents. Single marker regression analysis showed that both Xbarc61 and Xbarc146 had significant relationships with grain Fe and Zn concentrations, while Xbarc61 related to spike characteristics and Xbarc146 related to quality traits, separately. Other than these, Xgwm282 was associated with spike harvest index, SDS sedimentation value and Fe grain concentration, while Gwm445 was associated with spikelet number, grain number per spike and grain Fe concentration. These markers were validated for the studied DH population during the present study and they could be effectively used for marker-assisted selection to improve grain yield, quality, and bio-fortification capacity of bread wheat.


Asunto(s)
Biofortificación , Triticum , Triticum/genética , Pan , Haploidia , Fitomejoramiento , Grano Comestible , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA