Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 87(11): 1393-1406, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37550222

RESUMEN

Trichoderma reesei is the most well-known cellulase producer in the biorefinery industry. Its cellulase biosynthesis is repressed by glucose via carbon catabolite repression (CCR), making CCR-releasing strains with cellulase hyperproduction desirable. Here, we employed a microfluidic droplet platform to culture and screen T. reesei mutants capable of CCR release and cellulase overproduction from extensive mutagenesis libraries. With 3 mutagenesis rounds, about 6.20 × 103 droplets were sorted from a population of 1.51 × 106 droplets in a period of 4.4 h; 76 recovery mutants were screened on flask fermentation, and 2 glucose uptake retarded mutants, MG-9-3 and MG-9-3-30, were eventually isolated. We also generated a hypercellulase producer, M-5, with CCR release via a single mutagenesis round. The hyphal morphology and molecular mechanisms in the mutants were analyzed. This versatile approach combined with a comprehensive understanding of CCR release mechanisms will provide innovative and effective strategies for low-cost cellulase production.


Asunto(s)
Represión Catabólica , Celulasa , Trichoderma , Trichoderma/genética , Celulasa/genética , Celulasa/metabolismo , Microfluídica
2.
Nanomaterials (Basel) ; 10(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859038

RESUMEN

The most frequently used n-type electron transport layer (ETL) in high-efficiency perovskite solar cells (PSCs) is based on titanium oxide (TiO2) films, involving a high-temperature sintering (>450 °C) process. In this work, a dense, uniform, and pinhole-free compact titanium dioxide (TiOx) film was prepared via a facile chemical bath deposition process at a low temperature (80 °C), and was applied as a high-quality ETL for efficient planar PSCs. We tested and compared as-deposited substrates sintered at low temperatures (< 150 °C) and high temperatures (> 450 °C), as well as their corresponding photovoltaic properties. PSCs with a high-temperature treated TiO2 compact layer (CL) exhibited power conversion efficiencies (PCEs) as high as 15.50%, which was close to those of PSCs with low-temperature treated TiOx (14.51%). This indicates that low-temperature treated TiOx can be a potential ETL candidate for planar PSCs. In summary, this work reports on the fabrication of low-temperature processed PSCs, and can be of interest for the design and fabrication of future low-cost and flexible solar modules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA