Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mitochondrion ; 75: 101844, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237647

RESUMEN

Genomic investigations on an infant who presented with a putative mitochondrial disorder led to identification of compound heterozygous deletion with an overlapping region of ∼142 kb encompassing two nuclear encoded genes namely ERCC8 and NDUFAF2. Investigations on fetal-derived fibroblast culture demonstrated impaired bioenergetics and mitochondrial dysfunction, which explains the phenotype and observed infant mortality in the present study. The genetic findings from this study extended the utility of whole-genome sequencing as it led to development of a MLPA-based assay for carrier screening in the extended family and the prenatal testing aiding in the birth of two healthy children.


Asunto(s)
Mortalidad Infantil , Mitocondrias , Lactante , Niño , Embarazo , Femenino , Humanos , Mitocondrias/genética , Secuenciación Completa del Genoma , Metabolismo Energético , Genómica , Factores de Transcripción/genética , Enzimas Reparadoras del ADN/genética , Chaperonas Moleculares/genética , Proteínas Mitocondriales/genética
2.
J Nutr ; 153(12): 3382-3396, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37660953

RESUMEN

BACKGROUND: Maternal vitamin B12 deficiency plays a vital role in fetal programming, as corroborated by previous studies on murine models and longitudinal human cohorts. OBJECTIVES: This study assessed the effects of diet-induced maternal vitamin B12 deficiency on F1 offspring in terms of cardiometabolic health and normalization of these effects by maternal-periconceptional vitamin B12 supplementation. METHODS: A diet-induced maternal vitamin B12 deficient Wistar rat model was generated in which female rats were either fed a control AIN-76A diet (with 0.01 g/kg vitamin B12) or the same diet with vitamin B12 removed. Females from the vitamin B12-deficient group were mated with males on the control diet. A subset of vitamin B12-deficient females was repleted with vitamin B12 on day 1 of conception. The offspring in the F1 generation were assessed for changes in body composition, plasma biochemistry, and molecular changes in the liver. A multiomics approach was used to obtain a mechanistic insight into the changes in the offspring liver. RESULTS: We showed that a 36% reduction in plasma vitamin B12 levels during pregnancy in F0 females can lead to continued vitamin B12 deficiency (60%-70% compared with control) in the F1 offspring and program them for cardiometabolic adversities. These adversities, such as high triglycerides and low high-density lipoprotein cholesterol, were seen only among F1 males but not females. DNA methylome analysis of the liver of F1 3-mo-old offspring highlights sexual dimorphism in the alteration of methylation status of genes critical to signaling processes. Proteomics and targeted metabolomics analysis confirm that sex-specific alterations occur through modulations in PPAR signaling and steroid hormone biosynthesis pathway. Repletion of deficient mothers with vitamin B12 at conception normalizes most of the molecular and biochemical changes. CONCLUSIONS: Maternal vitamin B12 deficiency has a programming effect on the next generation and increases the risk for cardiometabolic syndrome in a sex-specific manner. Normalization of the molecular risk markers on vitamin B12 supplementation indicates a causal role.


Asunto(s)
Enfermedades Cardiovasculares , Deficiencia de Vitamina B 12 , Embarazo , Masculino , Humanos , Ratas , Animales , Femenino , Ratones , Ratas Wistar , Deficiencia de Vitamina B 12/metabolismo , Vitamina B 12 , Reproducción , Enfermedades Cardiovasculares/etiología
3.
PLoS One ; 8(12): e83616, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391796

RESUMEN

Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no protein coding capacity and have recently gained importance for their function as regulators of gene expression. Molecular studies on lncRNA have uncovered multifaceted interactions with protein coding genes. It has been suggested that lncRNAs are an additional layer of regulatory switches involved in gene regulation during development and disease. LncRNAs expressing in specific tissues or cell types during adult stages can have potential roles in form, function, maintenance and repair of tissues and organs. We used RNA sequencing followed by computational analysis to identify tissue restricted lncRNA transcript signatures from five different tissues of adult zebrafish. The present study reports 442 predicted lncRNA transcripts from adult zebrafish tissues out of which 419 were novel lncRNA transcripts. Of these, 77 lncRNAs show predominant tissue restricted expression across the five major tissues investigated. Adult zebrafish brain expressed the largest number of tissue restricted lncRNA transcripts followed by cardiovascular tissue. We also validated the tissue restricted expression of a subset of lncRNAs using independent methods. Our data constitute a useful genomic resource towards understanding the expression of lncRNAs in various tissues in adult zebrafish. Our study is thus a starting point and opens a way towards discovering new molecular interactions of gene expression within the specific adult tissues in the context of maintenance of organ form and function.


Asunto(s)
ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Hígado/metabolismo , Músculos/metabolismo , Miocardio/metabolismo , ARN Largo no Codificante/sangre , Análisis de Secuencia de ARN , Distribución Tisular , Pez Cebra/crecimiento & desarrollo
4.
BMC Res Notes ; 5: 11, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22226071

RESUMEN

BACKGROUND: Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. FINDINGS: We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. CONCLUSIONS: Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA