Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 18(6): e0281385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384745

RESUMEN

The gut microbiota-brain axis is a complex communication network essential for host health. Any long-term disruption can affect higher cognitive functions, or it may even result in several chronic neurological diseases. The type and diversity of nutrients an individual consumes are essential for developing the gut microbiota (GM) and the brain. Hence, dietary patterns might influence networks communication of this axis, especially at the age that both systems go through maturation processes. By implementing Mutual Information and Minimum Spanning Tree (MST); we proposed a novel combination of Machine Learning and Network Theory techniques to study the effect of animal protein and lipid intake on the connectivity of GM and brain cortex activity (BCA) networks in children from 5-to 10 years old from an indigenous community in the southwest of México. Socio-ecological conditions in this nonwestern lifestyle community are very homogeneous among its inhabitants but it shows high individual heterogeneity in the consumption of animal products. Results suggest that MST, the critical backbone of information flow, diminishes under low protein and lipid intake. So, under these nonwestern regimens, deficient animal protein and lipid consumption diets may significantly affect the GM-BCA connectivity in crucial development stages. Finally, MST offers us a metric that unifies biological systems of different nature to evaluate the change in their complexity in the face of environmental pressures or disturbances. Effect of Diet on gut microbiota and brain networks connectivity.


Asunto(s)
Microbioma Gastrointestinal , Afecciones Crónicas Múltiples , Animales , Humanos , México , Encéfalo , Pueblos Indígenas , Lípidos
2.
J Dev Orig Health Dis ; 14(4): 469-480, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222148

RESUMEN

Human health is strongly mediated by the gut microbiota ecosystem, which, in turn, depends not only on its state but also on its dynamics and how it responds to perturbations. Healthy microbiota ecosystems tend to be in criticality and antifragile dynamics corresponding to a maximum complexity configuration, which may be assessed with information and network theory analysis. Under this complex system perspective, we used a new analysis of published data to show that a children's population with an industrialized urban lifestyle from Mexico City exhibits informational and network characteristics similar to parasitized children from a rural indigenous population in the remote mountainous region of Guerrero, México. We propose then, that in this critical age for gut microbiota maturation, the industrialized urban lifestyle could be thought of as an external perturbation to the gut microbiota ecosystem, and we show that it produces a similar loss in criticality/antifragility as the one observed by internal perturbation due to parasitosis by the helminth A. lumbricoides. Finally, several general complexity-based guidelines to prevent or restore gut ecosystem antifragility are discussed.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Niño , Población Rural , Estilo de Vida , México/epidemiología
3.
ArXiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38196741

RESUMEN

Antifragility characterizes the benefit of a dynamical system derived from the variability in environmental perturbations. Antifragility carries a precise definition that quantifies a system's output response to input variability. Systems may respond poorly to perturbations (fragile) or benefit from perturbations (antifragile). In this manuscript, we review a range of applications of antifragility theory in technical systems (e.g., traffic control, robotics) and natural systems (e.g., cancer therapy, antibiotics). While there is a broad overlap in methods used to quantify and apply antifragility across disciplines, there is a need for precisely defining the scales at which antifragility operates. Thus, we provide a brief general introduction to the properties of antifragility in applied systems and review relevant literature for both natural and technical systems' antifragility. We frame this review within three scales common to technical systems: intrinsic (input-output nonlinearity), inherited (extrinsic environmental signals), and interventional (feedback control), with associated counterparts in biological systems: ecological (homogeneous systems), evolutionary (heterogeneous systems), and interventional (control). We use the common noun in designing systems that exhibit antifragile behavior across scales and guide the reader along the spectrum of fragility-adaptiveness-resilience-robustness-antifragility, the principles behind it, and its practical implications.

4.
PeerJ ; 8: e8533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095358

RESUMEN

We review the concept of ecosystem resilience in its relation to ecosystem integrity from an information theory approach. We summarize the literature on the subject identifying three main narratives: ecosystem properties that enable them to be more resilient; ecosystem response to perturbations; and complexity. We also include original ideas with theoretical and quantitative developments with application examples. The main contribution is a new way to rethink resilience, that is mathematically formal and easy to evaluate heuristically in real-world applications: ecosystem antifragility. An ecosystem is antifragile if it benefits from environmental variability. Antifragility therefore goes beyond robustness or resilience because while resilient/robust systems are merely perturbation-resistant, antifragile structures not only withstand stress but also benefit from it.

5.
PLoS One ; 13(7): e0200382, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30011317

RESUMEN

Sustainability is a key concept in economic and policy debates. Nevertheless, it is usually treated only in a qualitative way and has eluded quantitative analysis. Here, we propose a sustainability index based on the premise that sustainable systems do not lose or gain Fisher Information over time. We test this approach using time series data from the AmeriFlux network that measures ecosystem respiration, water and energy fluxes in order to elucidate two key sustainability features: ecosystem health and stability. A novel definition of ecosystem health is developed based on the concept of criticality, which implies that if a system's fluctuations are scale invariant then the system is in a balance between robustness and adaptability. We define ecosystem stability by taking an information theory approach that measures its entropy and Fisher information. Analysis of the Ameriflux consortium big data set of ecosystem respiration time series is contrasted with land condition data. In general we find a good agreement between the sustainability index and land condition data. However, we acknowledge that the results are a preliminary test of the approach and further verification will require a multi-signal analysis. For example, high values of the sustainability index for some croplands are counter-intuitive and we interpret these results as ecosystems maintained in artificial health due to continuous human-induced inflows of matter and energy in the form of soil nutrients and control of competition, pests and disease.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Teoría de la Información , América del Norte
6.
PeerJ ; 2: e557, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25337455

RESUMEN

Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA