Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 6(12): e28911, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194948

RESUMEN

Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Endonucleasas/metabolismo , Técnicas de Inactivación de Genes , Dedos de Zinc/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias/citología , Humanos , Metafase , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
2.
Nucleic Acids Res ; 39(21): 9283-93, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21813459

RESUMEN

Sequence-specific nucleases represent valuable tools for precision genome engineering. Traditionally, zinc-finger nucleases (ZFNs) and meganucleases have been used to specifically edit complex genomes. Recently, the DNA binding domains of transcription activator-like effectors (TALEs) from the bacterial pathogen Xanthomonas have been harnessed to direct nuclease domains to desired genomic loci. In this study, we tested a panel of truncation variants based on the TALE protein AvrBs4 to identify TALE nucleases (TALENs) with high DNA cleavage activity. The most favorable parameters for efficient DNA cleavage were determined in vitro and in cellular reporter assays. TALENs were designed to disrupt an EGFP marker gene and the human loci CCR5 and IL2RG. Gene editing was achieved in up to 45% of transfected cells. A side-by-side comparison with ZFNs showed similar gene disruption activities by TALENs but significantly reduced nuclease-associated cytotoxicities. Moreover, the CCR5-specific TALEN revealed only minimal off-target activity at the CCR2 locus as compared to the corresponding ZFN, suggesting that the TALEN platform enables the design of nucleases with single-nucleotide specificity. The combination of high nuclease activity with reduced cytotoxicity and the simple design process marks TALENs as a key technology platform for targeted modifications of complex genomes.


Asunto(s)
Proteínas de Unión al ADN/química , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Ingeniería Genética , Proteínas Bacterianas/química , División del ADN , Desoxirribonucleasas/genética , Marcación de Gen , Genoma Humano , Células HEK293 , Humanos , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Transactivadores/química , Efectores Tipo Activadores de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA