RESUMEN
In obesity, to reduce visceral adipose tissue (VAT), caloric restriction is a valid strategy. Salivary amylase is an enzyme that cleaves large starch carbohydrates molecules and its production is modulated by the central nervous system. In addition, heart rate variability (HRV) is simply a measure of the variation in time between each heartbeat. This variation is controlled by the autonomic nervous system. In the light of this evidence, the aim of this study is to characterize the effect of a very low-calorie ketogenic diet (VLCKD) on the autonomic nervous system in obese patients. Twenty subjects affected by obesity were recruited before and after 8 weeks of VLCKD intervention to evaluate salivary amylase by the ELISA test and HRV analysis. These parameters significantly increased after dietary treatment, and positively correlate to each other. VLCKD exerts a positive effect on salivary amylase and HRV, ameliorating body composition and biochemical features. In brief, this dietary intervention improves the autonomic nervous system activity. This is the first study about the effects of VLCKD upon the autonomic nervous system, but further studies are needed to elucidate the mechanism undergone VLCKD effects.
Asunto(s)
Dieta Cetogénica , Amilasas , Sistema Nervioso Autónomo , Restricción Calórica , Humanos , ObesidadRESUMEN
Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.