Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dalton Trans ; 53(33): 13906-13924, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39093017

RESUMEN

C-Nitroso compounds (RNO, R = alkyl and aryl) are byproducts of drug metabolism and bind to heme proteins, and their heme-RNO adducts are isoelectronic to ferrous nitroxyl (NO-/HNO) complexes. Importantly, heme-HNO compounds are key intermediates in the reduction of NO to N2O and nitrite to ammonium in the nitrogen cycle. Ferrous heme-RNO complexes act as stable analogs of these species, potentially allowing for the investigation of the vibrational and electronic properties of unstable heme-HNO intermediates. In this paper, a series of six-coordinate ferrous heme-RNO complexes (where R = iPr and Ph) were prepared using the TPP2- and 3,5-Me-BAFP2- co-ligands, and tetrahydrofuran, pyridine, and 1-methylimidazole as the axial ligands (bound trans to RNO). These complexes were characterized using different spectroscopic methods and X-ray crystallography. The complex [Fe(TPP)(THF)(iPrNO)] was further utilized for nuclear resonance vibrational spectroscopy (NRVS), allowing for the detailed assignment of the Fe-N(R)O vibrations of a heme-RNO complex for the first time. The vibrational properties of these species were then correlated with those of their HNO analogs, using DFT calculations. Our studies support previous findings that RNO ligands in ferrous heme complexes do not elicit a significant trans effect. In addition, the complexes are air-stable, and do not show any reactivity of their RNO ligands towards NO. So although ferrous heme-RNO complexes are suitable structural and electronic models for their HNO analogs, they are unsuitable to model the reactivity of heme-HNO complexes. We further investigated the reaction of our heme-RNO complexes with different Lewis acids. Here, [Fe(TPP)(THF)(iPrNO)] was found to be unreactive towards Lewis acids. In contrast, [Fe(3,5-Me-BAFP)(iPrNO)2] is reactive towards all of the Lewis acids investigated here, but in most cases the iron center is simply oxidized, resulting in the loss of the iPrNO ligand. In the case of the Lewis acid B2(pin)2, the reduced product [Fe(3,5-Me-BAFP)(iPrNH2)(iPrNO)] was identified by X-ray crystallography.


Asunto(s)
Hemo , Ácidos de Lewis , Óxido Nítrico , Compuestos Nitrosos , Óxido Nítrico/química , Hemo/química , Ácidos de Lewis/química , Compuestos Nitrosos/química , Vibración , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Modelos Moleculares , Cristalografía por Rayos X , Estructura Molecular , Compuestos Ferrosos/química , Ligandos , Conformación Molecular , Óxidos de Nitrógeno
2.
J Am Chem Soc ; 145(42): 23014-23026, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37824502

RESUMEN

Nitroxyl, HNO/NO-, the one-electron reduced form of NO, is suggested to take part in distinct signaling pathways in mammals and is also a key intermediate in various heme-catalyzed NOx interconversions in the nitrogen cycle. Cytochrome P450nor (Cyt P450nor) is a heme-containing enzyme that performs NO reduction to N2O in fungal denitrification. The reactive intermediate in this enzyme, termed "Intermediate I", is proposed to be an Fe-NHO/Fe-NHOH type species, but it is difficult to study its electronic structure and exact protonation state due to its instability. Here, we utilize a bulky bis-picket fence porphyrin to obtain the first stable heme-HNO model complex, [Fe(3,5-Me-BAFP)(MI)(NHO)], as a model for Intermediate I, and more generally HNO adducts of heme proteins. Due to the steric hindrance of the bis-picket fence porphyrin, [Fe(3,5-Me-BAFP)(MI)(NHO)] is stable (τ1/2 = 56 min at -30 °C), can be isolated as a solid, and is available for thorough spectroscopic characterization. In particular, we were able to solve a conundrum in the literature and provide the first full vibrational characterization of a heme-HNO complex using IR and nuclear resonance vibrational spectroscopy (NRVS). Reactivity studies of [Fe(3,5-Me-BAFP)(MI)(NHO)] with NO gas show a 91 ± 10% yield for N2O formation, demonstrating that heme-HNO complexes are catalytically competent intermediates for NO reduction to N2O in Cyt P450nor. The implications of these results for the mechanism of Cyt P450nor are further discussed.


Asunto(s)
Hemoproteínas , Porfirinas , Animales , Hemo/química , Porfirinas/química , Análisis Espectral , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA