Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081262

RESUMEN

We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion-photon couplings above 10-13 Ge V-1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7-4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.

2.
Phys Rev Lett ; 131(10): 102502, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739382

RESUMEN

The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the subatomic to the cosmological. Measurements of the tritium end-point spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the cyclotron radiation emission spectroscopy (CRES) technique culminating in the first frequency-based neutrino mass limit. With only a cm^{3}-scale physical detection volume, a limit of m_{ß}<155 eV/c^{2} (152 eV/c^{2}) is extracted from the background-free measurement of the continuous tritium beta spectrum in a Bayesian (frequentist) analysis. Using ^{83m}Kr calibration data, a resolution of 1.66±0.19 eV (FWHM) is measured, the detector response model is validated, and the efficiency is characterized over the multi-keV tritium analysis window. These measurements establish the potential of CRES for a high-sensitivity next-generation direct neutrino mass experiment featuring low background and high resolution.

3.
Phys Rev Lett ; 129(20): 201301, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36462025

RESUMEN

Microwave cavities have been deployed to search for bosonic dark matter candidates with masses of a few µeV. However, the sensitivity of these cavity detectors is limited by their volume, and the traditionally employed half-wavelength cavities suffer from a significant volume reduction at higher masses. Axion dark matter experiment (ADMX)-Orpheus mitigates this issue by operating a tunable, dielectrically loaded cavity at a higher-order mode, which allows the detection volume to remain large. The ADMX-Orpheus inaugural run excludes dark photon dark matter with kinetic mixing angle χ>10^{-13} between 65.5 µeV (15.8 GHz) and 69.3 µeV (16.8 GHz), marking the highest-frequency tunable microwave cavity dark matter search to date.

4.
Rev Sci Instrum ; 92(12): 124502, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972408

RESUMEN

Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 µeV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018) and Braine et al., Phys. Rev. Lett. 124, 101303 (2020)]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as the state-of-the-art quantum-noise-limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable microstrip superconducting quantum interference device amplifier in run 1A, and a Josephson parametric amplifier in run 1B, along with novel analysis tools that characterize the system noise temperature.

5.
Phys Rev Lett ; 127(26): 261803, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35029490

RESUMEN

We report the results from a haloscope search for axion dark matter in the 3.3-4.2 µeV mass range. This search excludes the axion-photon coupling predicted by one of the benchmark models of "invisible" axion dark matter, the Kim-Shifman-Vainshtein-Zakharov model. This sensitivity is achieved using a large-volume cavity, a superconducting magnet, an ultra low noise Josephson parametric amplifier, and sub-Kelvin temperatures. The validity of our detection procedure is ensured by injecting and detecting blind synthetic axion signals.

6.
Phys Rev Lett ; 124(10): 101303, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216421

RESUMEN

This Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31 µeV. This search utilizes the combination of a low-noise Josephson parametric amplifier and a large-cavity haloscope to achieve unprecedented sensitivity across this mass range. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics.

7.
Phys Rev Lett ; 121(26): 261302, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636160

RESUMEN

The µeV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX "Sidecar," which is designed to pave the way for future, higher mass, searches. This testbed experiment lives inside of and operates in tandem with the main ADMX experiment. The Sidecar experiment excludes masses in three widely spaced frequency ranges (4202-4249, 5086-5799, and 7173-7203 MHz). In addition, Sidecar demonstrates the successful use of a piezoelectric actuator for cavity tuning. Finally, this publication is the first to report data measured using both the TM_{010} and TM_{020} modes.

8.
Phys Rev Lett ; 114(16): 162501, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25955048

RESUMEN

It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA