Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 25(10): e14492, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39250771

RESUMEN

PURPOSE: To determine if patient-specific IMRT quality assurance can be measured on any matched treatment delivery system (TDS) for patient treatment delivery on another. METHODS: Three VMAT plans of varying complexity were created for each available energy for head and neck, SBRT lung, and right chestwall anatomical sites. Each plan was delivered on three matched Varian TrueBeam TDSs to the same Scandidos Delta4 Phantom+ diode array with only energy-specific device calibrations. Dose distributions were corrected for TDS output and then compared to TPS calculations using gamma analysis. Round-robin comparisons between measurements from each TDS were also performed using point-by-point dose difference, median dose difference, and the percent of point dose differences within 2% of the mean metrics. RESULTS: All plans had more than 95% of points passing a gamma analysis using 3%/3 mm criteria with global normalization and a 20% threshold when comparing measurements to calculations. The tightest gamma analysis criteria where a plan still passed > 95% were similar across delivery systems-within 0.5%/0.5 mm for all but three plan/energy combinations. Median dose deviations in measurement-to-measurement comparisons were within 0.7% and 1.0% for global and local normalization, respectively. More than 90% of the point differences were within 2%. CONCLUSION: A set of plans spanning available energies and complexity levels were delivered by three matched TDSs. Comparisons to calculations and between measurements showed dose distributions delivered by each TDS using the same DICOM RT-plan file meet tolerances much smaller than typical clinical IMRT QA criteria. This demonstrates each TDS is modeled to a similar accuracy by a common class (shared) beam model. Additionally, it demonstrates that dose distributions from one TDS show small differences in median dose to the others. This is an important validation component of the common beam model approach, allowing for operational improvements in the clinic.


Asunto(s)
Neoplasias de Cabeza y Cuello , Aceleradores de Partículas , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Aceleradores de Partículas/instrumentación , Garantía de la Calidad de Atención de Salud/normas , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias Pulmonares/radioterapia
2.
Med Phys ; 51(8): 5693-5707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38669453

RESUMEN

BACKGROUND: Clinical intensity modulated radiation therapy plans have been described using various complexity metrics to help identify problematic radiotherapy plans. Most previous studies related to the quantification of plan complexity and their utility have relied on institution-specific plans which can be highly variable depending on the machines, planning techniques, delivery modalities, and measurement devices used. In this work, 1723 plans treating one of only four standardized geometries were simultaneously analyzed to investigate how radiation plan complexity metrics vary across four different sets of common objectives. PURPOSE: To assess the treatment plan complexity characteristics of plans developed for Imaging and Radiation Oncology Core (IROC) phantoms. Specifically, to understand the variability in plan complexity between institutions for a common plan objective, and to evaluate how various complexity metrics differentiate relevant groups of plans. METHODS: 1723 plans treating one of four standardized IROC phantom geometries representing four different anatomical sites of treatment were analyzed. For each plan, 22 MLC-descriptive plan complexity metrics were calculated, and principal component analysis (PCA) was applied to the 22 metrics in order to evaluate differences in plan complexity between groups. Across all metrics, pairwise comparisons of the IROC phantom data were made for the following classifications of the data: anatomical phantom treated, treatment planning system (TPS), and the combination of MLC model and treatment planning system. An objective k-means clustering algorithm was also applied to the data to determine if any meaningful distinctions could be made between different subgroups. The IROC phantom database was also compared to a clinical database from the University of Wisconsin-Madison (UW) which included plans treating the same four anatomical sites as the IROC phantoms using a TrueBeam™ STx and Pinnacle3 TPS. RESULTS: The IROC head and neck and spine plans were distinct from the prostate and lung plans based on comparison of the 22 metrics. All IROC phantom plan group complexity metric distributions were highly variable despite all plans being designed for identical geometries and plan objectives. The clusters determined by the k-means algorithm further supported that the IROC head and neck and spine plans involved similar amounts of complexity and were largely distinct from the prostate and lung plans, but no further distinctions could be made. Plan complexity in the head and neck and spine IROC phantom plans were similar to the complexity encountered in the UW clinical plans. CONCLUSIONS: There is substantial variability in plan complexity between institutions when planning for the same objective. For each IROC anatomical phantom treated, the magnitude of variability in plan complexity between institutions is similar to the variability in plan complexity encountered within a single institution database containing several hundred unique clinical plans treating corresponding anatomies in actual patients.


Asunto(s)
Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Análisis de Componente Principal , Dosificación Radioterapéutica
3.
Med Phys ; 50(10): 5933-5934, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819174
4.
J Appl Clin Med Phys ; 23(8): e13728, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35861648

RESUMEN

PURPOSE: The purpose of this work is to evaluate the Standard Imaging Exradin W2 plastic scintillation detector (W2) for use in the types of fields used for stereotactic radiosurgery. METHODS: Prior to testing the W2 in small fields, the W2 was evaluated in standard large field conditions to ensure good detector performance. These tests included energy dependence, short-term repeatability, dose-response linearity, angular dependence, temperature dependence, and dose rate dependence. Next, scan settings and calibration of the W2 were optimized to ensure high quality data acquisition. Profiles of small fields shaped by cones and multi-leaf collimator (MLCs) were measured using the W2 and IBA RAZOR diode in a scanning water tank. Output factors for cones (4-17.5 mm) and MLC fields (1, 2, 3 cm) were acquired with both detectors. Finally, the dose at isocenter for seven radiosurgery plans was measured with the W2 detector. RESULTS: W2 exhibited acceptable warm-up behavior, short-term reproducibility, axial angular dependence, dose-rate linearity, and dose linearity. The detector exhibits a dependence upon energy, polar angle, and temperature. Scanning measurements taken with the W2 and RAZOR were in good agreement, with full-width half-maximum and penumbra widths agreeing to within 0.1 mm. The output factors measured by the W2 and RAZOR exhibited a maximum difference of 1.8%. For the seven point-dose measurements of radiosurgery plans, the W2 agreed well with our treatment planning system with a maximum deviation of 2.2%. The Cerenkov light ratio calibration method did not significantly impact the measurement of relative profiles, output factors, or point dose measurements. CONCLUSION: The W2 demonstrated dosimetric characteristics that are suitable for radiosurgery field measurements. The detector agreed well with the RAZOR diode for output factors and scanned profiles and showed good agreement with the treatment planning system in measurements of clinical treatment plans.


Asunto(s)
Plásticos , Radiocirugia , Calibración , Humanos , Radiometría/métodos , Radiocirugia/métodos , Reproducibilidad de los Resultados
5.
Am J Clin Oncol ; 45(5): 202-207, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35446279

RESUMEN

OBJECTIVE: The objective of this study was to examine tumor response with positron emission tomography (PET)/magnetic resonance imaging (MRI) during chemoradiotherapy as a predictor of outcome in patients with p16-positive oropharynx cancer. MATERIALS AND METHODS: Patients with p16-positive oropharynx cancer were treated with chemoradiotherapy. Low-risk (LR) disease was defined as T1-T3 and N0-2b and ≤10 pack-years and intermediate-risk (IR) disease as T4 or N2c-3 or >10 pack-years. Patients underwent a PET/MRI scan pretreatment and at fraction 10. Change in value of imaging means were analyzed by analysis of variance. K-means clustering with Euclidean distance functions were used for patient clustering. Silhouette width was used to determine the optimal number of clusters. Linear regression was performed on all radiographic metrics using patient and disease characteristics. RESULTS: Twenty-four patients were enrolled with 7 LR and 11 IR patients available for analysis. Pretreatment imaging characteristics between LR and IR patients were similar. Patients with LR disease exhibited a larger reduction in maximum standardized uptake value (SUV) compared with IR patients (P<0.05). Cluster analysis defined 2 cohorts that exhibited a similar intratreatment response. Cluster 1 contained 7 of 7 LR patients and 8 of 11 IR patients. Cluster 2 contained 3 of 11 IR patients. Cluster 2 exhibited significant differences compared with cluster 1 in the change in primary tumor peak SUV and largest lymph node median SUV. CONCLUSIONS: We identified that IR p16-positive oropharynx cancers exhibit heterogeneity in their PET/MRI response to chemoradiotherapy. These data support further study of intratreatment imaging response as a potential mechanism to identify patients with IR oropharynx cancer suitable for treatment deintensification.


Asunto(s)
Neoplasias Orofaríngeas , Tomografía de Emisión de Positrones , Quimioradioterapia/métodos , Fluorodesoxiglucosa F18 , Humanos , Imagen por Resonancia Magnética , Neoplasias Orofaríngeas/diagnóstico por imagen , Neoplasias Orofaríngeas/terapia , Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos , Radiofármacos
7.
J Appl Clin Med Phys ; 21(8): 309-314, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32648368

RESUMEN

Daily output variations of up to ±2% were observed for a protracted time on a Varian TrueBeam® STx; these output variations were hypothesized to be the result of atmospheric communication of the sealed monitor chamber. Daily changes in output relative to baseline, measured with an ionization chamber array (DQA3) and the amorphous silicon flat panel detector (IDU) on the TrueBeam®, were compared with daily temperature-pressure corrections (PTP ) determined from sensors within the DQA3. Output measurements were performed using a Farmer® ionization chamber over a 5-hour period, during which there was controlled variation in the monitor chamber temperature. The root mean square difference between percentage output change from baseline measured with the DQA3 and IDU was 0.50% over all measurements. Over a 7-month retrospective review of daily changes in output and PTP , weak correlation (R2  = 0.30) was observed between output and PTP for the first 5 months; for the final 2 months, daily output changes were linearly correlated with changes in PTP , with a slope of 0.84 (R2  = 0.89). Ionization measurements corrected for ambient temperature and pressure during controlled heating and cooling of the monitor chamber differed from expected values for a sealed monitor chamber by up to 4.6%, but were consistent with expectation for an air-communicating monitor chamber within uncertainty (1.3%, k = 2). Following replacement of the depressurized monitor chamber, there has been no correlation between daily percentage change in output and PTP (R2  = 0.09). The utility of control charts is demonstrated for earlier identification of changes in the sensitivity of a sealed monitor chamber.


Asunto(s)
Aceleradores de Partículas , Radiometría , Comunicación , Humanos , Estudios Retrospectivos , Incertidumbre
8.
Med Phys ; 47(8): 3621-3635, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32337734

RESUMEN

PURPOSE: The plan-class specific reference field concept could theoretically improve the calibration of radiation detectors in a beam environment much closer to clinical deliveries than existing broad beam dosimetry protocols. Due to a lack of quantitative guidelines and representative data, however, the pcsr field concept has not yet been widely implemented. This work utilizes quantitative plan complexity metrics from modulated clinical treatments in order to investigate the establishment of potential plan classes using two different clustering methodologies. The utility of these potential plan clusters is then further explored by analyzing their relevance to actual dosimetric correction factors. METHODS: Two clinical databases containing several hundred modulated plans originally delivered on two Varian linear accelerators were analyzed using 21 plan complexity metrics. In the first approach, each database's plans were further subdivided into groups based on the anatomic site of treatment and then compared to one another using a series of nonparametric statistical tests. In the second approach, objective clustering algorithms were used to seek potential plan clusters in the multidimensional complexity-metric space. Concurrently, beam- and detector-specific dosimetric corrections for a subset of the modulated clinical plans were determined using Monte Carlo for three different ionization chambers. The distributions of the dosimetric correction factors were compared to the derived plan clusters to see which plan clusters, if any, could help predict the correction factor magnitudes. Ultimately, a simplified volume averaging metric (SVAM) is shown to be much more relevant to the total dosimetric correction factor than the established plan clusters. RESULTS: Plan groups based on the site of treatment did not show noticeable distinction from one another in the context of the metrics investigated. An objective clustering algorithm was able to discriminate volumetric modulated arc therapy (VMAT) plans from step-and-shoot intensity-modulated radiation therapy plans with an accuracy of 90.8%, but no clusters were found to exist at any level more specific than delivery modality. Monte Carlo determined correction factors for the modulated plans ranged from 0.970 to 1.104, 0.983 to 1.027, and 0.986 to 1.009 for the A12, A1SL, and A26 chambers, respectively, and were highly variable even within the treatment modality plan clusters. The magnitudes of these correction factors were explained almost entirely by volume averaging with SVAM demonstrating positive correlation with all Monte Carlo established total correction factors. CONCLUSIONS: Plan complexity metrics do provide some quantitative basis for the investigation of plan clusters, but an objective clustering algorithm demonstrated that quantifiable differences could only be found between VMAT and step-and-shoot beams delivered on the same treatment machine. The inherent variability of the Monte Carlo determined correction factors could not be explained solely by the modality of the treatment but were instead almost entirely dependent upon the volume averaging correction, which itself depends on the detector position within the dose distribution, dose gradients, and other factors. Considering the continued difficulty of determining a relevant plan metric to base plan clusters on, case-by-case corrections may instead obviate the need for the pcsr field concept in the future.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Análisis por Conglomerados , Método de Montecarlo , Aceleradores de Partículas , Radiometría , Dosificación Radioterapéutica
9.
J Appl Clin Med Phys ; 20(12): 25-35, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31675460

RESUMEN

Patient dose from 2.5 MV images on the TrueBeam linear accelerator is not easily quantified, primarily because this beam energy is not normally modeled by commercial treatment planning systems. In this work we present the feasibility of using the Eclipse® treatment planning system to model this beam. The Acuros XB and the AAA dose calculation algorithms were tested. Profiles, PDDs, and output factors were measured for the 2.5 MV unflattened imaging beam and used for beam modeling. The algorithms were subsequently verified using MPPG 5.a guidelines. Calculated doses with both algorithms agreed with the measurement data to within the following criteria recommended for conventional therapeutic MV beams: 2% local dose-difference in the high-dose region, 3% global difference in the low-dose region, 3 mm distance to agreement in the penumbra, and a gamma pass rate of >95% for 3%/3 mm criteria. Acuros was able to accurately calculate dose through cork and bone-equivalent heterogeneities. AAA was able to accurately calculate dose through the bone-equivalent heterogeneity but did not pass within the recommended criteria for the cork heterogeneity. For the 2.5 MV imaging beam, both the AAA and Acuros algorithms provide calculated doses that agree with measured results well within the 20% criteria for imaging beams recommended by AAPM TG-180.


Asunto(s)
Algoritmos , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Planificación de Atención al Paciente/normas , Fantasmas de Imagen , Fotones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica
10.
J Neurooncol ; 145(2): 385-390, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31606876

RESUMEN

PURPOSE: The aim of this study was to determine whether a higher biological effective dose (BED) would result in improved local control in patients treated with fractionated stereotactic radiotherapy (FSRT) for their resected brain metastases. METHODS: Patients with newly diagnosed brain metastases without previous brain radiotherapy were retrospectively reviewed. Patients underwent surgical resection of at least one brain metastasis and were treated with adjuvant FSRT, delivering 25-36 Gy in 5-6 fractions. Outcomes were computed using Kaplan-Meier survival analysis and univariate analysis. RESULTS: Fifty-four patients with 63 post-operative cavities were included. Median follow-up was 16 months (3-60). Median metastasis size at diagnosis was 2.9 cm (0.6-8.1) and median planning target volume was 19.7 cm3 (6.3-68.1). Two-year local control (LC) was 83%. When stratified by dose, 2 years LC rate was 95.1% in those treated with 30-36 Gy in 5-6 fractions (BED10 of 48-57.6 Gy10) versus 59.1% lesions treated with 25 Gy in 5 fractions (BED10 of 37.5 Gy10) (p < 0.001). LC was not associated with resection cavity size. One year overall survival was 68.7%, and was independent of BED10. Symptomatic radiation necrosis occurred in 7.9% of patients and was not associated with dose. CONCLUSION: In the post-operative setting, high-dose FSRT (BED10 > 37.5 Gy10) were associated with a significantly higher rate of LC compared to lower BED regimens. Overall, 25 Gy in 5 fractions is not an adequate dose to control microscopic disease. If selecting a 5-fraction regimen, 30 Gy in five fractions appears to provide excellent tumor bed control.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Quimioradioterapia Adyuvante/métodos , Radiocirugia/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/patología , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
11.
Med Phys ; 46(2): 913-924, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30449040

RESUMEN

PURPOSE: The determination of absorbed dose to water from external beam radiotherapy using radiation detectors is currently rooted in calibration protocols that do not account for modulations encountered in patient-specific deliveries. Detector response in composite clinical fields has not been extensively studied due to the time and effort required to determine these corrections on a case-by-case basis. To help bridge this gap in knowledge, corrections for the Exradin A1SL scanning chamber were determined in a large number of composite clinical fields using Monte Carlo methods. The chamber-specific perturbations that contribute the most to the overall correction factor were also determined. METHODS: A total of 131 patient deliveries comprised of 834 beams from a Varian C-arm linear accelerator were converted to EGSnrc Monte Carlo inputs. A validated BEAMnrc 21EX linear accelerator model was used as a particle source throughout the EGSnrc simulations. Composite field dose distributions were compared against a commercial treatment planning system for validation. The simulation geometry consisted of a cylindrically symmetric water-equivalent phantom with the Exradin A1SL scanning chamber embedded inside. Various chamber perturbation factors were investigated in the egs_chamber user code of EGSnrc and were compared to reference field conditions to determine the plan-specific correction factor. RESULTS: The simulation results indicated that the Exradin A1SL scanning chamber is suitable to use as an absolute dosimeter within a high-dose and low-gradient target region in most nonstandard composite fields; however, there are still individual cases that require larger delivery-specific corrections. The volume averaging and replacement perturbations showed the largest impact on the overall plan-specific correction factor for the Exradin A1SL scanning chamber, and both volumetric modulated arc therapy (VMAT) and step-and-shoot beams demonstrated similar correction factor magnitudes among the data investigated. Total correction magnitudes greater than 2% were required by 9.1% of step-and-shoot beams and 14.5% of VMAT beams. When examining full composite plan deliveries as opposed to individual beams, 0.0% of composite step-and-shoot plans and 2.6% of composite VMAT plans required correction magnitudes greater than 2%. CONCLUSIONS: The A1SL scanning chamber was found to be suitable to use for absolute dosimetry in high-dose and low-gradient dose regions of composite IMRT plans but even if a composite dose distribution is large compared to the detector used, a correction-free absorbed dose-to-water measurement is not guaranteed.


Asunto(s)
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Radiometría/normas , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Radiometría/instrumentación , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
12.
Eur Radiol ; 29(2): 682-688, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29967955

RESUMEN

OBJECTIVES: The aim of this pilot study was to investigate the utility of haemodynamic parameters derived from dynamic contrast-enhanced computed tomography (DCE-CT) scans in the assessment of tumour response to treatment in malignant pleural mesothelioma (MPM) patients. METHODS: The patient cohort included nine patients undergoing chemotherapy and five patients on observation. Each patient underwent two DCE-CT scans separated by approximately 2 months. The DCE-CT parameters of tissue blood flow (BF) and tissue blood volume (BV) were obtained within the dynamically imaged tumour. Mean relative changes in tumour DCE-CT parameters between scans were compared between the on-treatment and on-observation cohorts. DCE-CT parameter changes were correlated with relative change in tumour bulk evaluated according to the modified RECIST protocol. RESULTS: Differing trends in relative change in BF and BV between scans were found between the two patient groups (p = 0.19 and p = 0.06 for BF and BV, respectively). No significant rank correlations were found when comparing relative changes in DCE-CT parameters with relative change in tumour bulk. CONCLUSIONS: Differing trends in the relative change of BF and BV between patients on treatment and on observation indicate the potential of DCE-CT for the assessment of pharmacodynamic endpoints with respect to treatment in MPM. A future study with a larger patient cohort and unified treatment regimens should be undertaken to confirm the results of this pilot study. KEY POINTS: • CT-derived haemodynamic parameters show differing trends between malignant pleural mesothelioma patients on treatment and patients off treatment • Changes in haemodynamic parameters do not correlate with changes in tumour bulk as measured according to the modified RECIST protocol • Differing trends across the two patient groups indicate the potential sensitivity of DCE-CT to assess pharmacodynamic endpoints in the treatment of MPM.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/diagnóstico por imagen , Mesotelioma/tratamiento farmacológico , Neoplasias Pleurales/diagnóstico por imagen , Neoplasias Pleurales/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/patología , Masculino , Mesotelioma/irrigación sanguínea , Mesotelioma/patología , Mesotelioma Maligno , Persona de Mediana Edad , Neovascularización Patológica/diagnóstico por imagen , Proyectos Piloto , Neoplasias Pleurales/irrigación sanguínea , Neoplasias Pleurales/patología , Criterios de Evaluación de Respuesta en Tumores Sólidos , Tomografía Computarizada Espiral/métodos , Resultado del Tratamiento
13.
J Appl Clin Med Phys ; 19(5): 368-374, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30062720

RESUMEN

The management of a pregnant patient in radiation oncology is an infrequent event requiring careful consideration by both the physician and physicist. The aim of this manuscript was to highlight treatment planning techniques and detail measurements of fetal dose for a pregnant patient recently requiring treatment for a brain cancer. A 27-year-old woman was treated during gestational weeks 19-25 for a resected grade 3 astrocytoma to 50.4 Gy in 28 fractions, followed by an additional 9 Gy boost in five fractions. Four potential plans were developed for the patient: a 6 MV 3D-conformal treatment plan with enhanced dynamic wedges, a 6 MV step-and-shoot (SnS) intensity-modulated radiation therapy (IMRT) plan, an unflattened 6 MV SnS IMRT plan, and an Accuray TomoTherapy HDA helical IMRT treatment plan. All treatment plans used strategies to reduce peripheral dose. Fetal dose was estimated for each treatment plan using available literature references, and measurements were made using thermoluminescent dosimeters (TLDs) and an ionization chamber with an anthropomorphic phantom. TLD measurements from a full-course radiation delivery ranged from 1.0 to 1.6 cGy for the 3D-conformal treatment plan, from 1.0 to 1.5 cGy for the 6 MV SnS IMRT plan, from 0.6 to 1.0 cGy for the unflattened 6 MV SnS IMRT plan, and from 1.9 to 2.6 cGy for the TomoTherapy treatment plan. The unflattened 6 MV SnS IMRT treatment plan was selected for treatment for this particular patient, though the fetal doses from all treatment plans were deemed acceptable. The cumulative dose to the patient's unshielded fetus is estimated to be 1.0 cGy at most. The planning technique and distance between the treatment target and fetus both contributed to this relatively low fetal dose. Relevant treatment planning strategies and treatment delivery considerations are discussed to aid radiation oncologists and medical physicists in the management of pregnant patients.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Adulto , Femenino , Humanos , Fantasmas de Imagen , Embarazo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Conformacional , Radioterapia de Intensidad Modulada
14.
Cureus ; 10(4): e2422, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29872602

RESUMEN

Magnetic resonance-guided radiation therapy (MRgRT) offers advantages for image guidance for radiotherapy treatments as compared to conventional computed tomography (CT)-based modalities. The superior soft tissue contrast of magnetic resonance (MR) enables an improved visualization of the gross tumor and adjacent normal tissues in the treatment of abdominal and thoracic malignancies. Online adaptive capabilities, coupled with advanced motion management of real-time tracking of the tumor, directly allow for high-precision inter-/intrafraction localization. The primary aim of this case series is to describe MR-based interventions for localizing targets not well-visualized with conventional image-guided technologies. The abdominal and thoracic sites of the lung, kidney, liver, and gastric targets are described to illustrate the technological advancement of MR-guidance in radiotherapy.

15.
Technol Cancer Res Treat ; 16(3): 366-372, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28168936

RESUMEN

PURPOSE: Magnetic resonance imaging-guided radiation therapy has entered clinical practice at several major treatment centers. Treatment of early-stage non-small cell lung cancer with stereotactic body radiation therapy is one potential application of this modality, as some form of respiratory motion management is important to address. We hypothesize that magnetic resonance imaging-guided tri-cobalt-60 radiation therapy can be used to generate clinically acceptable stereotactic body radiation therapy treatment plans. Here, we report on a dosimetric comparison between magnetic resonance imaging-guided radiation therapy plans and internal target volume-based plans utilizing volumetric-modulated arc therapy. MATERIALS AND METHODS: Ten patients with early-stage non-small cell lung cancer who underwent radiation therapy planning and treatment were studied. Following 4-dimensional computed tomography, patient images were used to generate clinically deliverable plans. For volumetric-modulated arc therapy plans, the planning tumor volume was defined as an internal target volume + 0.5 cm. For magnetic resonance imaging-guided plans, a single mid-inspiratory cycle was used to define a gross tumor volume, then expanded 0.3 cm to the planning tumor volume. Treatment plan parameters were compared. RESULTS: Planning tumor volumes trended larger for volumetric-modulated arc therapy-based plans, with a mean planning tumor volume of 47.4 mL versus 24.8 mL for magnetic resonance imaging-guided plans ( P = .08). Clinically acceptable plans were achievable via both methods, with bilateral lung V20, 3.9% versus 4.8% ( P = .62). The volume of chest wall receiving greater than 30 Gy was also similar, 22.1 versus 19.8 mL ( P = .78), as were all other parameters commonly used for lung stereotactic body radiation therapy. The ratio of the 50% isodose volume to planning tumor volume was lower in volumetric-modulated arc therapy plans, 4.19 versus 10.0 ( P < .001). Heterogeneity index was comparable between plans, 1.25 versus 1.25 ( P = .98). CONCLUSION: Magnetic resonance imaging-guided tri-cobalt-60 radiation therapy is capable of delivering lung high-quality stereotactic body radiation therapy plans that are clinically acceptable as compared to volumetric-modulated arc therapy-based plans. Real-time magnetic resonance imaging provides the unique capacity to directly observe tumor motion during treatment for purposes of motion management.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Radioterapia Guiada por Imagen/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Radioisótopos de Cobalto/uso terapéutico , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/efectos de la radiación , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Imagen por Resonancia Magnética/métodos , Masculino , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/normas , Radioterapia de Intensidad Modulada/métodos
16.
Med Phys ; 43(2): 865-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26843247

RESUMEN

PURPOSE: Accurate CT radiograph angle is not usually important in diagnostic CT. However, there are applications in radiation oncology and interventional radiology in which the orientation of the x-ray source and detector with respect to the patient is clinically important. The authors present a method for measuring the accuracy of the tube/detector assembly with respect to the prescribed tube/detector position for CT localizer, fluoroscopic, and general radiograph imaging using diagnostic, mobile, and c-arm based CT systems. METHODS: A mathematical expression relating the x-ray projection of two metal BBs is related to gantry angle. Measurement of the BBs at a prescribed gantry (i.e., c-arm) angle can be obtained and using this relation the prescribed versus actual gantry angle compared. No special service mode or proprietary information is required, only access to projection images is required. Projection images are available in CT via CT localizer radiographs and in the interventional setting via fluorography. RESULTS: The technique was demonstrated on two systems, a mobile CT scanner and a diagnostic CT scanner. The results confirmed a known issue with the mobile scanner and accurately described the CT localizer angle of the diagnostic system tested. CONCLUSIONS: This method can be used to quantify gantry angle, which is important when projection images are used for procedure guidance, such as in brachytherapy and interventional radiology applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Fluoroscopía , Humanos , Dosis de Radiación , Rotación
17.
Radiother Oncol ; 118(2): 416-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26627702

RESUMEN

SBRT is increasingly utilized in liver tumor treatment. MRI-guided RT allows for real-time MRI tracking during therapy. Liver tumors are often poorly visualized and most contrast agents are transient. Gadoxetate may allow for sustained tumor visualization. Here, we report on the first use of gadoxetate during real-time MRI-guided SBRT.


Asunto(s)
Neoplasias Hepáticas/cirugía , Radiocirugia/métodos , Anciano , Anciano de 80 o más Años , Medios de Contraste , Evaluación de Medicamentos/métodos , Estudios de Factibilidad , Gadolinio DTPA , Humanos , Neoplasias Hepáticas/diagnóstico , Imagen por Resonancia Magnética Intervencional/métodos , Persona de Mediana Edad
18.
Med Phys ; 42(4): 1739-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25832063

RESUMEN

PURPOSE: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. METHODS: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner's HU calibration curve. RESULTS: The ELAC was 0.0516 ± 0.0063 cm(-1) and 0.0580 ± 0.0091 cm(-1) for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm(-1) for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of -0.29% and -0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively; dosimetrically appropriate HU values were estimated to be 79 and 199 HU, respectively. CONCLUSIONS: The dosimetric properties of the embolization agents are very close to those of water for a 6 MV beam. Therefore, treating the entire intracranial space as uniform in composition will result in less than 1% dosimetric error for n-BCA emboli smaller than 3.4 cm without added tantalum and n-BCA emboli smaller than 1.1 cm with added tantalum. Furthermore, when effective embolization can be achieved by the neurointerventionalist using n-BCA without tantalum, the dosimetric impact of overriding material properties will be lessened. However, due to the high attenuation of embolization agents with and without added tantalum for diagnostic energies, artifacts may occur that necessitate additional imaging to accurately identify the spatial extent of the region to be treated.


Asunto(s)
Malformaciones Arteriovenosas/terapia , Embolización Terapéutica , Enbucrilato , Aceite Etiodizado , Fármacos Hematológicos , Tantalio/efectos de la radiación , Malformaciones Arteriovenosas/diagnóstico por imagen , Calibración , Embolización Terapéutica/métodos , Humanos , Imagen por Resonancia Magnética , Fotones , Polvos , Tomografía Computarizada por Rayos X , Agua
19.
Acad Radiol ; 21(4): 523-30, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24594422

RESUMEN

RATIONALE AND OBJECTIVES: Pulmonary hypertension (PH) is a complex and fatal disease that is difficult to diagnose noninvasively. This study evaluated previously published computed tomography-based vessel measurement criteria and investigated the predictive power and diagnostic ability of the main pulmonary artery diameter (MPAD) and the ratio of MPAD to aorta diameter (rPA). MATERIALS AND METHODS: The database for this study consisted of 175 PH patients (for whom mean pulmonary artery pressure [mPAP] was known), 16 patients without PH but with known mPAP (non-PH patients), and 114 "normal" patients without known mPAP. The performance of previously published criteria, MPAD > 29 mm and rPA > 1, was determined. The relationship between vessel measurements and mPAP was evaluated through correlation and linear regression analysis. The ability of these measurements to discriminate between patients with and without PH was determined by receiver operating characteristic analysis. RESULTS: For discriminating between PH and "normal" patients, the sensitivity and specificity of the criterion MPAD > 29 mm were 0.89 (0.84-0.93) and 0.83 (0.76-0.90), respectively, and the sensitivity and specificity of the criterion rPA > 1 were 0.89 (0.85-0.94) and 0.82 (0.74-0.89), respectively. At a specificity of 0.95 in the task of separating PH and "normal" patients, the sensitivity of MPAD was 0.81 (0.72-0.90) and the sensitivity of rPA was 0.76 (0.66-0.85), but the specificity for both decreased when non-PH patients were included. For the combined PH and non-PH patient groups, the correlation between the vessel measurements and mPAP was significant but low, and the ability of the vessel measurements to predict mPAP was limited. CONCLUSION: This study found that the sensitivity of previously published vessel criteria for identifying PH patients is high, but the specificity may not be high enough for routine use in a clinical patient population.


Asunto(s)
Algoritmos , Angiografía/métodos , Hipertensión Pulmonar/diagnóstico por imagen , Arteria Pulmonar/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
20.
Lung Cancer ; 82(2): 190-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24018024

RESUMEN

Imaging of malignant pleural mesothelioma (MPM) is essential to the diagnosis, assessment, and monitoring of this disease. The complex morphology and growth pattern of MPM, however, create unique challenges for image acquisition and interpretation. These challenges have captured the attention of investigators around the world, some of whom presented their work at the 2012 International Conference of the International Mesothelioma Interest Group (iMig 2012) in Boston, Massachusetts, USA, September 2012. The measurement of tumor thickness on computed tomography (CT) scans is the current standard of care in the assessment of MPM tumor response to therapy; in this context, variability among observers in the measurement task and in the tumor response classification categories derived from such measurements was reported. Alternate CT-based tumor response criteria, specifically direct measurement of tumor volume change and change in lung volume as a surrogate for tumor response, were presented. Dynamic contrast-enhanced CT has a role in other settings, but investigation into its potential use for imaging mesothelioma tumor perfusion only recently has been initiated. Magnetic resonance imaging (MRI) and positron-emission tomography (PET) are important imaging modalities in MPM and complement the information provided by CT. The pointillism sign in diffusion-weighted MRI was reported as a potential parameter for the classification of pleural lesions as benign or malignant, and PET parameters that measure tumor activity and functional tumor volume were presented as indicators of patient prognosis. Also reported was the use of PET/CT in the management of patients who undergo high-dose radiation therapy. Imaging for MPM impacts everything from initial patient diagnosis to the outcomes of clinical trials; iMig 2012 captured this broad range of imaging applications as investigators exploit technology and implement multidisciplinary approaches toward the benefit of MPM patients.


Asunto(s)
Diagnóstico por Imagen , Neoplasias Pulmonares/diagnóstico , Mesotelioma/diagnóstico , Neoplasias Pleurales/diagnóstico , Diagnóstico por Imagen/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/terapia , Mediciones del Volumen Pulmonar , Mesotelioma/mortalidad , Mesotelioma/terapia , Mesotelioma Maligno , Neoplasias Pleurales/mortalidad , Neoplasias Pleurales/terapia , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Resultado del Tratamiento , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA