Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(10): 104303, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932640

RESUMEN

We investigate the dynamics of a deterministic self-propelled particle endowed with coherent memory. We evidence experimentally and numerically that it exhibits several stable free states. The system is composed of a self-propelled drop bouncing on a vibrated liquid driven by the waves it emits at each bounce. This object possesses a propulsion memory resulting from the coherent interference of the waves accumulated along its path. We investigate here the transitory regime of the buildup of the dynamics which leads to velocity modulations. Experiments and numerical simulations enable us to explore unchartered areas of the phase space and reveal the existence of a self-sustained oscillatory regime. Finally, we show the coexistence of several free states. This feature emerges both from the spatiotemporal nonlocality of this path memory dynamics as well as the wave nature of the driving mechanism.

2.
Chaos ; 28(9): 096109, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30278648

RESUMEN

A walker is the association of a sub-millimetric bouncing drop moving along with a co-evolving Faraday wave. When confined in a harmonic potential, its stable trajectories are periodic and quantised both in extension and mean angular momentum. In this article, we present the rest of the story, specifically the chaotic paths. They are chaotic and show intermittent behaviors between an unstable quantised set of attractors. First, we present the two possible situations we find experimentally. Then, we emphasise theoretically two mechanisms that lead to unstable situations. It corresponds either to noise-driven chaos or low-dimensional deterministic chaos. Finally, we characterise experimentally each of these distinct situations. This article aims at presenting a comprehensive investigation of the unstable paths in order to complete the picture of walkers in a two dimensional harmonic potential.

3.
Phys Rev E ; 95(6-1): 062607, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709359

RESUMEN

We investigate the crossing of an energy barrier by a self-propelled particle described by a Rayleigh friction term. We reveal the existence of a sharp transition in the external force field whereby the amplitude dramatically increases. This corresponds to a saddle point transition in the velocity flow phase space, as would be expected for any type of repulsive force field. We use this approach to rationalize the results obtained by Eddi et al. [Phys. Rev. Lett. 102, 240401 (2009)PRLTAO0031-900710.1103/PhysRevLett.102.240401] who studied the interaction between a drop propelled by its accompanying wave field and a submarine obstacle. This wave particle entity can overcome potential barrier, suggesting the existence of a "macroscopic tunneling effect." We show that the effect of self-propulsion is sufficiently strong to generate crossing of the high-energy barrier. By assuming a random distribution of initial angles, we define a probability distribution to cross the potential barrier that matches with the data of Eddi et al. This probability is similar to the one encountered in statistical physics for Hamiltonian systems, i.e., a Boltzmann exponential law.

4.
Phys Rev Lett ; 118(6): 063605, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234503

RESUMEN

Collective phenomena emerging from nonlinear interactions between multiple oscillators, such as synchronization and frequency locking, find applications in a wide variety of fields. Optomechanical resonators, which are intrinsically nonlinear, combine the scientific assets of mechanical devices with the possibility of long distance controlled interactions enabled by traveling light. Here we demonstrate light-mediated frequency locking of three distant nano-optomechanical oscillators positioned in a cascaded configuration. The oscillators, integrated on a chip along a common coupling waveguide, are optically driven with a single laser and oscillate at gigahertz frequency. Despite an initial mechanical frequency disorder of hundreds of kilohertz, the guided light locks them all with a clear transition in the optical output. The experimental results are described by Langevin equations, paving the way to scalable cascaded optomechanical configurations.

5.
Phys Rev E ; 93(3): 033122, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27078462

RESUMEN

We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.

6.
Eur Phys J E Soft Matter ; 38(10): 113, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26537726

RESUMEN

We report the results of a theoretical investigation of the stability of a toroidal vortex bound by an interface. Two distinct instability mechanisms are identified that rely on, respectively, surface tension and fluid inertia, either of which may prompt the transformation from a circular to a polygonal torus. Our results are discussed in the context of three experiments, a toroidal vortex ring, the hydraulic jump, and the hydraulic bump.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25215805

RESUMEN

A bouncing droplet on a vibrated bath can couple to the waves it generates, so that it becomes a propagative walker. Its propulsion at constant velocity means that a balance exists between the permanent input of energy provided by the vibration and the dissipation. Here we seek a simple theoretical description of the resulting non-Hamiltonian dynamics with a walker immersed in a harmonic potential well. We demonstrate that the interaction with the recently emitted waves can be modeled by a Rayleigh-type friction. The Rayleigh oscillator has well defined attractors. The convergence toward them and their stability is investigated through an energetic approach and a linear stability analysis. These theoretical results provide a description of the dynamics in excellent agreement with the experimental data. It is thus a basic framework for further investigations of wave-particle interactions when memory effects are included.


Asunto(s)
Modelos Teóricos , Simulación por Computador , Fricción , Movimiento (Física) , Dinámicas no Lineales , Viscosidad
8.
Phys Rev Lett ; 113(10): 104101, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238360

RESUMEN

The transmission of information can couple two entities of very different nature, one of them serving as a memory for the other. Here we study the situation in which information is stored in a wave field and serves as a memory that pilots the dynamics of a particle. Such a system can be implemented by a bouncing drop generating surface waves sustained by a parametric forcing. The motion of the resulting "walker" when confined in a harmonic potential well is generally disordered. Here we show that these trajectories correspond to chaotic regimes characterized by intermittent transitions between a discrete set of states. At any given time, the system is in one of these states characterized by a double quantization of size and angular momentum. A low dimensional intermittency determines their respective probabilities. They thus form an eigenstate basis of decomposition for what would be observed as a superposition of states if all measurements were intrusive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA