Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570084

RESUMEN

CoFe-based alloys and rare earth (RE) elements are among the most studied materials in applying magnetic devices to improve soft magnetic characteristics. A series of Co40Fe40Sm20 films are deposited on a glass substrate via the sputtering technique, followed by an annealing process to investigate their effect on microstructural and optical properties of Co40Fe40Sm20 films. In this study, the increase in the thickness of Co40Fe40Sm20 films and annealing temperatures resulted in a smoother surface morphology. The 40 nm Co40Fe40Sm20 films annealed 300 °C are expected to have good wear resistance and adhesive properties due to their high values of H/E ratio and surface energy. Optical transparency also increased due to the smoother surface of the Co40Fe40Sm20 films.

2.
Materials (Basel) ; 14(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34683609

RESUMEN

This research explores the behavior of Co40Fe40W10B10 when it is sputtered onto Si(100) substrates with a thickness (tf) ranging from 10 nm to 100 nm, and then altered by an annealing process at temperatures of 200 °C, 250 °C, 300 °C, and 350 °C, respectively. The crystal structure and grain size of Co40Fe40W10B10 films with different thicknesses and annealing temperatures are observed and estimated by an X-ray diffractometer pattern (XRD) and full-width at half maximum (FWHM). The XRD of annealing Co40Fe40W10B10 films at 200 °C exhibited an amorphous status due to insufficient heating drive force. Moreover, the thicknesses and annealing temperatures of body-centered cubic (BCC) CoFe (110) peaks were detected when annealing at 250 °C with thicknesses ranging from 80 nm to 100 nm, annealing at 300 °C with thicknesses ranging from 50 nm to 100 nm, and annealing at 350 °C with thicknesses ranging from 10 nm to 100 nm. The FWHM of CoFe (110) decreased and the grain size increased when the thickness and annealing temperature increased. The CoFe (110) peak revealed magnetocrystalline anisotropy, which was related to strong low-frequency alternative-current magnetic susceptibility (χac) and induced an increasing trend in saturation magnetization (Ms) as the thickness and annealing temperature increased. The contact angles of all Co40Fe40W10B10 films were less than 90°, indicating the hydrophilic nature of Co40Fe40W10B10 films. Furthermore, the surface energy of Co40Fe40W10B10 presented an increased trend as the thickness and annealing temperature increased. According to the results, the optimal conditions are a thickness of 100 nm and an annealing temperature of 350 °C, owing to high χac, large Ms, and strong adhesion; this indicates that annealing Co40Fe40W10B10 at 350 °C and with a thickness of 100 nm exhibits good thermal stability and can become a free or pinned layer in a magnetic tunneling junction (MTJ) application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA