Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ultrason Sonochem ; 107: 106929, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820933

RESUMEN

A novel approach to ultrasound-assisted Pickering interfacial biocatalysis (PIB) has been proposed and implemented for the efficient enzymatic transesterification production of vitamin A fatty acid esters. This is the first instance of exploiting the synergistic effect of ultrasound and the bifunctional modification of enzyme supports to accelerate biocatalytic performance in PIB systems. The optimal conditions were determined to be ultrasound power of 70 W, on/off time of 5 s/5 s, substrate molar ratio of 1:1, enzyme addition of 2 %, and a volume ratio of n-hexane to PBS of 3:1, a temperature of 40 °C, and a time of 30 min. The application of ultrasound technology not only improved lipase activity but also allowed for a reduction in emulsion droplet size to enhance interfacial mass transfer.Bifunctional modification of silica-based supports enhanced stability of immobilized enzymes by increasing hydrogen bonding while maintaining the active interface microenvironment. Compared with a non-ultrasound-assisted PIB system stabilized by mono-modified immobilized enzyme particles, the catalytic efficacy (CE) of the novel system reached 8.18 mmol g-1 min-1, which was enhanced by 3.33-fold, while the interfacial area was found to have increased by 17.5-fold. The results facilitated the conversion of vitamin A palmitate (VAP), vitamin A oleate (VAO), vitamin A linoleate (VAL), and vitamin A linolenate (VALn), with conversion rates of approximately 98.2 %, 97.4 %, 96.1 %, and 94.7 %, respectively. This represents the most efficient example that has been reported to our knowledge. Furthermore, the system demonstrated improved reusability, with a conversion rate of 62.1 % maintained even after 10 cycles. The findings presented in this paper provide valuable insights into an efficient and conveniently promising protocol for the development of PIB systems.


Asunto(s)
Biocatálisis , Enzimas Inmovilizadas , Ésteres , Lipasa , Ondas Ultrasónicas , Vitamina A , Vitamina A/química , Ésteres/química , Lipasa/metabolismo , Lipasa/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Esterificación , Temperatura , Dióxido de Silicio/química
2.
PLoS One ; 19(1): e0287773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38236920

RESUMEN

Surface dielectric barrier discharge (SDBD) has wide applications in flow control, wastewater treatment, and biomedicine. The dielectric surface of an SDBD actuator is generally attached to the water droplets during applications. Thus far, only a few studies have been conducted on the effects of water covering the dielectric surface on the discharge characteristics of SDBD. Therefore, the effects of water droplets on the discharge of an SDBD actuator based on a repetitive microsecond pulse power supply were investigated in this study. The results show that a filament micro-discharge channel forms between the light and dark regions at the internal edge of the SDBD high-voltage electrode and develops toward the center of the dielectric surface in the region without water droplet coverage. SDBD in the water-covered region was divided into two stages. This paper compares the electrical characteristics of SDBD with and without water droplet, and explores the electric field distortion effect of water droplet endpoints through 3D simulation.Based on the theories of water droplet polarization and gas discharge, the effects of water droplets on plasma development and surface charge accumulation under water-covered condition were analyzed. The water droplet plays a similar role as a "secondary electrode" during the discharge process.


Asunto(s)
Electricidad , Simulación por Computador , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA