RESUMEN
PURPOSE: Breast cancer metastasis relies on cellular invasion and angiogenesis facilitated by the downregulation of metastatic suppressor proteins like Cluster of Differentiation 82 (CD82). Currently, no medicines target multiple systems to prevent metastatic progression through CD82 upregulation. This study screened for plant extracts displaying effects on cell proliferation, invasion, and CD82 expression in breast cancer cells, and in vivo angiogenesis, and further correlated between the biological activities and effect on CD82 expression. METHODS: Seventeen ethanolic plant extracts were screened for their effect on cell proliferation (against MDA-MB-231 and MCF-7 breast cancer and Hek293 kidney cells), cell invasion and effect on CD82 expression in metastatic MDA-MB-231 cells. Selected extracts were further evaluated for in vivo anti-angiogenesis. RESULTS: Extracts displayed varying antiproliferative activity against the different cell lines, and those that showed selectivity indexes (SI) > 0.5 against MDA-MB-231 were selected for anti-invasion evaluation. Buddleja saligna Willd. (BS), Combretum apiculatum Sond. (CA), Foeniculum vulgare, Greyia radlkoferi, Gunnera perpensa and Persicaria senegalensis (Meisn.) Soják (PS) displayed 50% inhibitory concentration (IC50) values of 44.46 ± 3.46, 74.00 ± 4.48, 180.43 ± 4.51, 96.97 ± 2.29, 55.29 ± 9.88 and 243.60 ± 2.69 µg/mL, respectively against MDA-MB-231, and compared to Hek293 showed SI of 0.9, 0.7, 1.4, 1.1, 2.2 and 0.5. Significant invasion inhibition was observed at both 20 and 40 µg/mL for BS (94.10 ± 0.74 and 96.73 ± 0.95%) and CA (87.42 ± 6.54 and 98.24 ± 0.63%), whereas GR (14.91 ± 1.62 and 41 ± 1.78%) and PS (36.58 ± 0.54 and 51.51 ± 0.83%), only showed significant inhibition at 40 µg/mL, and FV (< 5% inhibition) and GP (10 ± 1.03 and 22 ± 1.31%) did not show significant inhibition at both concentrations. Due to the significant anti-invasive activity of BS, CA and PS at 40 µg/mL, these extracts were further evaluated for their potential to stimulate CD82. BS showed significant (p < 0.05) reduction in CD82 at 20 and 40 µg/mL (13.2 ± 2.2% and 20.3 ± 1.5% decrease, respectively), whereas both CA and PS at 20 µg/mL increased (p < 0.05) CD82 expression (16.4 ± 0.8% and 5.4 ± 0.6% increase, respectively), and at 40 µg/mL significantly reduced CD82 expression (23.4 ± 3.1% and 11.2 ± 2.9% decrease, respectively). Using the yolk sac membrane assay, BS (59.52 ± 4.12 and 56.72 ± 3.13% newly formed vessels) and CA (83.33 ± 3.17 and 74.00 ± 2.12%) at both 20 and 40 µg/egg showed significant (p < 0.001) angiogenesis inhibition, with BS showing statistical similar activity to the positive control, combretastatin A4 (10 nmol/egg), whereas PS only displayed significant (p < 0.001) angiogenesis stimulation at 40 µg/egg (120.81 ± 3.34% newly formed vessels). CONCLUSION: BS exhibits antiproliferative, anti-invasive, and anti-angiogenic activity despite inhibiting CD82, suggesting an alternative mode of action. CA at 20 µg/mL shows moderate anti-invasive and anti-angiogenic potential by stimulating CD82, while at 40 µg/mL it still displays these properties but inhibits CD82, suggesting an additional mode of action. PS, with the least antiproliferative activity, stimulates CD82 and inhibits angiogenesis at 20 µg/mL but inhibits CD82 and increases angiogenesis at 40 µg/mL, indicating CD82 targeting as a major mode of action. Future studies should explore breast cancer xenograft models to assess the extracts' impact on CD82 expression and angiogenesis in the tumor microenvironment, along with isolating bioactive compounds from the extracts.
Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Proteína Kangai-1 , Invasividad Neoplásica , Neovascularización Patológica , Extractos Vegetales , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Femenino , Animales , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Proteína Kangai-1/metabolismo , Plantas Medicinales/química , Células HEK293 , Línea Celular Tumoral , Etanol/química , Etanol/farmacología , Embrión de Pollo , Metástasis de la Neoplasia , Membrana Corioalantoides/efectos de los fármacos , AngiogénesisRESUMEN
BACKGROUND: Metabolism is an important component of the kinetic characteristics of herbal constituents, and it often determines the internal dose and concentration of these effective constituents at the target site. The metabolic profile of plant extracts and pure compounds need to be determined for any possible herb-drug metabolic interactions that might occur. METHODS: Various concentrations of the essential oil of Lippia scaberrima, the ethanolic extract of Lippia scaberrima alone and their combinations with fermented and unfermented Aspalathus linearis extract were used to determine the inhibitory potential on placental, microsomal and recombinant human hepatic Cytochrome P450 enzymes. Furthermore, the study investigated the synthesis and characterization of gold nanoparticles from the ethanolic extract of Lippia scaberrima as a lead sample. Confirmation and characterization of the synthesized gold nanoparticles were conducted through various methods. Additionally, the cytotoxic properties of the ethanolic extract of Lippia scaberrima were compared with the gold nanoparticles synthesized from Lippia scaberrima using gum arabic as a capping agent. RESULTS: All the samples showed varying levels of CYP inhibition. The most potent inhibition took place for CYP2C19 and CYP1B1 with 50% inhibitory concentration (IC50) values of less than 0.05 µg/L for the essential oil tested and IC50-values between 0.05 µg/L-1 µg/L for all the other combinations and extracts tested, respectively. For both CYP1A2 and CYP2D6 the IC50-values for the essential oil, the extracts and combinations were found in the range of 1 - 10 µg/L. The majority of the IC50 values found were higher than 10 µg/L and, therefore, were found to have no inhibition against the CYP enzymes tested. CONCLUSION: Therefore, the essential oil of Lippia scaberrima, the ethanolic extract of Lippia scaberrima alone and their combinations with Aspalathus linearis do not possess any clinically significant CYP interaction potential and may be further investigated for their adjuvant potential for use in the tuberculosis treatment regimen. Furthermore, it was shown that the cytotoxic potential of the Lippia scaberrima gold nanoparticles was reduced by twofold when compared to the ethanolic extract of Lippia scaberrima.
Asunto(s)
Aspalathus , Lippia , Nanopartículas del Metal , Aceites Volátiles , Humanos , Femenino , Embarazo , Oro , Aspalathus/metabolismo , Lippia/metabolismo , Placenta , Sistema Enzimático del Citocromo P-450 , Extractos Vegetales/farmacología , Aceites Volátiles/farmacologíaRESUMEN
Background: Atopic dermatitis (eczema) is an inflammatory skin condition with synthetic treatments that induce adverse effects and are ineffective. One of the proposed causes for the development of the condition is the outside-in hypothesis, which states that eczema is caused by a disruption in the skin barrier. These disruptions include developing dry cracked skin, which promotes the production of histamine. Bulbine frutescens (BF) is traditionally used to treat wounds and eczema; however, limited research has been conducted to scientifically validate this. Furthermore, gold nanoparticles (AuNPs) have been used to repair damaged skin; however, no research has been conducted on AuNPs synthesized using BF. Purpose: The study aimed to determine whether BF alleviated skin damage through wound healing, reducing the production of histamine and investigate whether AuNPs synthesized using BF would enhance biological activity. Methods: Four extracts and four synthesized AuNPs were prepared using BF and their antiproliferative and wound healing properties against human keratinocyte cells (HaCaT) were evaluated. Thereafter, the selected samples antiproliferative activity and antihistamine activity against phorbol 12-myristate 13-acetate (PMA) stimulated granulocytes were evaluated. Results: Of the eight samples, the freeze-dried leaf juice (BFE; p < 0.01) extract and its AuNPs (BFEAuNPs; p < 0.05) displayed significant wound closure at 100 µg/mL and were further evaluated. The selected samples displayed a fifty percent inhibitory concentration (IC50) of >200 µg/mL against PMA stimulated granulocytes. Compared to the untreated (media with PMA) control (0.30 ± 0.02 ng/mL), BFEAuNPs significantly inhibited histamine production at a concentration of 100 (p < 0.01) and 50 µg/mL (p < 0.001). Conclusion: BFE and BFEAuNPs stimulated wound closure, while BFEAuNPs significantly inhibited histamine production. Further investigation into BFEAuNPs in vivo wound healing activity and whether it can target histamine-associated receptors on mast cells as a potential mechanism of action should be considered.
RESUMEN
Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.
Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Tensinas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Genes Supresores de TumorRESUMEN
7-Methyljuglone (7-MJ) is a pure compound isolated from the roots of Euclea natalensis A. DC., a shrub indigenous to South Africa. It exhibits significant promise as a potential treatment for the highly communicable disease tuberculosis (TB), owing to its effective antimycobacterial activity against Mycobacterium tuberculosis. Despite its potential therapeutic benefits, 7-MJ has demonstrated in vitro cytotoxicity against various cancerous and non-cancerous cell lines, raising concerns about its safety for consumption by TB patients. Therefore, this review focuses on exploring the potential of poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as a delivery system, which has been shown to decrease in vitro cytotoxicity, and 7-MJ as an effective antimycobacterial compound.
RESUMEN
Cyperus sexangularis (CS) is a plant in the sedges family (Cyperaceae) that grows abundantly in swampy areas. The leaf sheath of plants in the Cyperus genus are mostly used domestically for mat making, while they are implicated for skin treatment in traditional medicine. The plant was investigated for its phytochemical contents as well as its antioxidant, anti-inflammatory and anti-elastase properties. The n-hexane and dichloromethane leaf extracts were chromatographed on a silica gel column to afford compounds 1-6. The compounds were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. The inhibitory effect of each compound against 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and ferric ion radicals were determined by standard in vitro antioxidant methods. The in vitro anti-inflammatory response was measured using egg albumin denaturation (EAD) assay, while the anti-elastase activity of each compound in human keratinocyte (HaCaT) cells was also monitored. The compounds were characterized as three steroidal derivatives, stigmasterol (1), 17-(1-methyl-allyl)-hexadecahydro-cyclopenta[a]phenanthrene (2) and ß-sitosterol (3), dodecanoic acid (4) and two fatty acid esters, ethyl nonadecanoate (5) and ethyl stearate (6). Stigmasterol (1) exhibited the best biological properties, with IC50 of 38.18 ± 2.30 µg/mL against DPPH, 68.56 ± 4.03 µg/mL against NO and 303.58 ± 10.33 µAAE/mg against Fe3+. At 6.25 µg/mL, stigmasterol inhibited EAD by 50%. This activity was lower when compared to diclofenac (standard), which demonstrated 75% inhibition of the protein at the same concentration. Compounds 1, 3, 4 and 5 showed comparable anti-elastase activity with an IC50 ≥ 50 µg/mL, whereas the activity of ursolic acid (standard) was double fold with an IC50 of 24.80 ± 2.60 µg/mL when compared to each of the compounds. In conclusion, this study has identified three steroids (1-3), one fatty acid (4), and two fatty acid esters (5 and 6) in C. sexangularis leaf for the first time. The compounds showed considerable antioxidant, anti-inflammatory and anti-elastase properties. Thus, the findings may serve as a justification for the folkloric use of the plant as a local skin ingredient. It may also serve to validate the biological role of steroids and fatty acid compounds in cosmeceutical formulations.
Asunto(s)
Antioxidantes , Cyperus , Humanos , Antioxidantes/farmacología , Estigmasterol , Extractos Vegetales/química , Antiinflamatorios/farmacología , Óxido Nítrico , Ácidos GrasosRESUMEN
In this study, 10 essential oils (EOs), from nine plants (Cinnamomum camphora, Curcuma longa, Citrus aurantium, Morinda citrifolia, Petroselinum crispum, Plectranthus amboinicus, Pittosporum senacia, Syzygium coriaceum, and Syzygium samarangense) were assessed for their antimicrobial, antiaging and antiproliferative properties. While only S. coriaceum, P. amboinicus (MIC: 0.50 mg/mL) and M. citrifolia (MIC: 2 mg/mL) EOs showed activity against Cutibacterium acnes, all EOs except S. samarangense EO demonstrated activity against Mycobacterium smegmatis (MIC: 0.125-0.50 mg/mL). The EOs were either fungistatic or fungicidal against one or both tested Candida species with minimum inhibitory/fungicidal concentrations of 0.016-32 mg/mL. The EOs also inhibited one or both key enzymes involved in skin aging, elastase and collagenase (IC50: 89.22-459.2 µg/mL; 0.17-0.18 mg/mL, respectively). Turmerone, previously identified in the C. longa EO, showed the highest binding affinity with the enzymes (binding energy: -5.11 and -6.64 kcal/mol). Only C. aurantium leaf, C. longa, P. amboinicus, P. senacia, S. coriaceum, and S. samarangense EOs were cytotoxic to the human malignant melanoma cells, UCT-MEL1 (IC50: 88.91-277.25 µg/mL). All the EOs, except M. citrifolia EO, were also cytotoxic to the human keratinocytes non-tumorigenic cells, HaCat (IC50: 33.73-250.90 µg/mL). Altogether, some interesting therapeutic properties of the EOs of pharmacological/cosmeceutical interests were observed, which warrants further investigations.
Asunto(s)
Cosmecéuticos , Aceites Volátiles , Plantas Medicinales , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , CandidaRESUMEN
Melanoma cells secrete pro-angiogenic factors, which stimulates growth, proliferation and metastasis, and therefore are key therapeutic targets. Buddleja saligna (BS), and an isolated triterpenoid mixture (DT-BS-01) showed a fifty percent inhibitory concentration (IC50) of 33.80 ± 1.02 and 5.45 ± 0.19 µg/mL, respectively, against melanoma cells (UCT-MEL-1) with selectivity index (SI) values of 1.64 and 5.06 compared to keratinocytes (HaCat). Cyclooxygenase-2 (COX-2) inhibition was observed with IC50 values of 35.06 ± 2.96 (BS) and 26.40 ± 4.19 µg/mL (DT-BS-01). BS (30 µg/mL) significantly inhibited interleukin (IL)-6 (83.26 ± 17.60%) and IL-8 (100 ± 0.2%) production, whereas DT-BS-01 (5 µg/mL) showed 51.07 ± 2.83 (IL-6) and 0 ± 6.7% (IL-8) inhibition. Significant vascular endothelial growth factor (VEGF) inhibition, by 15.84 ± 4.54 and 12.21 ± 3.48%, respectively, was observed. In the ex ovo chick embryo yolk sac membrane assay (YSM), BS (15 µg/egg) significantly reduced new blood vessel formation, with 53.34 ± 11.64% newly formed vessels. Silver and palladium BS nanoparticles displayed noteworthy SI values. This is the first report on the significant anti-angiogenic activity of BS and DT-BS-01 and should be considered for preclinical trials as there are currently no US Food and Drug Administration (FDA) approved drugs to inhibit angiogenesis in melanoma.
RESUMEN
Gold nanoparticles from plant extracts and their bioactive compounds to treat various maladies have become an area of interest to many researchers. Acne vulgaris is an inflammatory disease of the pilosebaceous unit caused by the opportunistic bacteria Cutibacterium acnes and Staphylococcus epidermis. These bacteria are not only associated with inflammatory acne but also with prosthetic-implant-associated infections and wounds. Studies have hypothesised that these bacteria have a mutualistic relationship and act as a multispecies system. It is believed that these bacteria form a multispecies biofilm under various conditions and that these biofilms contribute to increased antibiotic resistance compared to single-species biofilms. This study aimed to investigate the antibacterial and wound healing potential of synthesised gold nanoparticles (AuNPs) from an endemic South African plant, Plectranthus aliciae (AuNPPAE), its major compound rosmarinic acid (AuNPRA) and a widely used antibiotic, tetracycline (AuNPTET). Synthesised gold nanoparticles were successfully formed and characterised using ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ-potential), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED), and they were investigated for stability under various biological conditions. Stable nanoparticles were formed with ζ-potentials of -18.07 ± 0.95 mV (AuNPPAE), -21.5 ± 2.66 mV (AuNPRA), and -39.83 ± 1.6 mV (AuNPTET). The average diameter of the AuNPs was 71.26 ± 0.44 nm, 29.88 ± 3.30 nm, and 132.6 ± 99.5 nm for AuNPPAE, AuNPRA, and AuNPTET, respectively. In vitro, biological studies confirmed that although no antibacterial activity or biofilm inhibition was observed for the nanoparticles tested on the multispecies C. acnes and S. epidermis systems, these samples had potential wound closure activity. Gold nanoparticles formed with rosmarinic acid significantly increased wound closure by 21.4% at 25% v/v (≈29.2 µg/mL) compared to the negative cell control and the rosmarinic acid compound at the highest concentration tested of 500 µg/mL. This study concluded that green synthesised gold nanoparticles of rosmarinic acid could potentially be used for treating wounds.
RESUMEN
Angiogenesis is an essential mechanism in both physiological and pathological functions, such as wound healing and cancer metastasis. Several growth factors mediate angiogenesis, including vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). This study evaluated the potential wound healing activity of Greyia radlkoferi Szyszyl (GR) and its effect on growth factors regulating angiogenesis. The ethanolic leaf extract of GR was evaluated for antibacterial activity against wound associated bacteria; Staphylococcus aureus and Pseudomonas aeruginosa. It exhibited antibacterial activity against two strains of S. aureus (ATCC 25293 and ATCC 6538) displaying a minimum inhibitory concentration (MIC) at 250 and 500 µg/ml, respectively. The antioxidant activity of the extract was investigated for nitric oxide (NO) scavenging activity and showed a fifty percent inhibitory concentration (IC50) of 1266.5 ± 243.95 µg/ml. The extract was further investigated to determine its effect on the proliferation and modulation of growth factors secreted by human keratinocytes (HaCaT). Its effect on wound closure was evaluated using the scratch assay, where non-toxic concentrations were tested, as determined by the antiproliferative assay against HaCat cells (IC50 > 400 µg/ml). Results showed that the extract significantly inhibited wound closure, with a percentage closure of 60.15 ± 1.41% (p < 0.05) and 49.52 ± 1.43% (p < 0.01) at a concentration of 50 and 100 µg/ml, respectively, when compared to the 0.25% Dimethyl sulfoxide vehicle control (65.86 ± 1.12%). Quantification of secreted growth factors from cell-free supernatant, collected from the scratch assay, revealed that the extract significantly decreased the concentration of platelet-derived growth factor (PDGF-AA) at both 50 (p < 0.05) and 100 µg/ml (p < 0.001) (443.08 ± 77.36 and 178.98 ± 36.60 pg/ml) when compared to the 0.25% DMSO vehicle control (538.33 ± 12.64 pg/ml). Therefore, whilst the extract showed antibacterial activity against wound associated bacteria, it did not induce wound healing but rather showed a significant inhibition of wound closure, which was confirmed by the inhibition of PDGF-AA, a major growth factor involved in angiogenesis. Therefore, the GR extract, should be considered for further investigation of anti-angiogenic and anti-metastatic properties against cancer cells.
RESUMEN
Mupirocin has been reported for its role in the treatment of infected wounds through its antibacterial activity, however the role of mupirocin in promoting wound healing via alternative mechanisms has not been extensively evaluated. This study aimed to evaluate the potential effect of mupirocin to promote wound healing, not only through its antibacterial activity but by increasing human keratinocyte proliferation and growth factor production. In the scratch assay, using human keratinocytes (HaCat), mupirocin (at 0.1 and 0.2 mM) significantly increased wound closure compared to the vehicle control. Cell viability, measured from the scratch assay, verified the increase in wound closure, where mupirocin at both concentrations showed higher cell viability compared to the vehicle control. In addition, mupirocin at 0.1 mM significantly stimulated the production of hepatocyte growth factor and M-CSF in HaCat cells, whereas at 0.2 mM, PDGF-AA and EPO were increased. The findings of this study suggest that mupirocin, which is commonly used as an antibacterial agent for the treatment of wounds, also facilitates the wound healing process by stimulating the proliferation of human keratinocytes and enhancing the production of several growth factors involved in wound healing. This is the first report on the effect of mupirocin on growth factors expressed by human keratinocytes as well as the stimulation of keratinocyte proliferation.
RESUMEN
OBJECTIVES: Liver illnesses are a major public health issue all over the world. Medicinal plants constituents a viable alternative for the development of phytopharmaceuticals with hepatoprotective activity in order to solve some of these health-related problems. The present study is focused on the phytochemical and biological investigation on Indian traditional medicinal plant extracts, for their cytotoxic and hepatoprotective activity. The isolated compounds showed the presence of phenolic constituents which lead to cytotoxicity and hepatoprotective activity of medicinal plant. Cancer causes about 13% of all human deaths in 2007 (7.6 million) (American Cancer Society and WHO December 2006-07). The American Cancer Society estimates that 12,990 new cases of cervical cancer will be diagnosed in the United States year 2016. Cancer-related deaths are expected to increase, with an estimated 11.4 million deaths in 2030. METHODS: The ethanolic extracts of Centella asiatica, Myristica fragrans, Trichosanthes palmata, Woodfordia fruticosa, Curculigo orchioides were evaluated against HEP-G2 cell lines for hepatoprotective activity and Curculigo orchioides was further promoted for the isolation of secondary metabolites based on inhibitory concentration. RESULTS: The ethanolic extracts of C. asiatica, M. fragrans, T. palmata, W. fruticosa, Curculigo orchioides shown significant cytotoxic activity (IC50≤100 µg/mL). The plant extracts also shown significant hepatoprotective activity in a dose dependent manner when tested against HEP-G2 cell lines and cytotoxicity studies against HeLa and HEP-G2 cells. CONCLUSIONS: The extract of Curculigo orchiodes rhizome showed significant cytotoxicity results. Hence the Curculigo orchiodes rhizome was selected for further phytochemical studies to isolate active compounds and their Characterization by GCMS.
Asunto(s)
Curculigo , Plantas Medicinales , Curculigo/química , Cromatografía de Gases y Espectrometría de Masas , Humanos , Extractos Vegetales/química , Plantas Medicinales/química , RizomaRESUMEN
This study investigated a unique one-pot microwave-assisted green synthesis method of gold (Au) and silver (Ag) nanoparticles (NPs) using cannabidiol (CBD) as a capping and reducing agent. Furthermore, Au and Ag NPs were also chemically synthesized using poly(vinyl pyrrolidone), which functioned as reference materials when comparing the size, shape, and cytotoxicity of NPs. Synthesis parameters such as reaction time, temperature, and precursor molar ratio were optimized to control the size and shape of the biosynthesized NPs. Various characterization techniques such as transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were used to confirm the formation and properties of Au and Ag NPs. Both biosynthesized metal NPs were spherical and monodispersed, with average particle sizes of 8.4 nm (Au-CBD) and 4.8 nm (Ag-CBD). This study also explored the potential cytotoxicity of CBD-capped NPs in human keratinocyte cells, which was observed to be of minimal concern. The novel synthesis approach presented in this study is free from harsh chemical reagents; therefore, these NPs can be used in a wide array of applications, including the pharmaceutical and biomedical fields.
RESUMEN
The human skin is home to millions of bacteria, fungi, and viruses which form part of a unique microbiome. Commensal microbes, including Cutibacterium acnes can occasionally become opportunistic resulting in the onset of dermatological diseases such as acne. Acne is defined as a chronic inflammatory disorder based on its ability to persist for long periods throughout an individual's life. The synthesis of gold nanoparticles (AuNPs) was performed using the bottom-up approach by reduction of a gold salt (HAuCl4.3H2O) by the methanol extract (HO-MeOH) and aqueous decoction prepared from the dried aerial parts of Helichrysum odoratissimum (HO-Powder). The HO-MeOH and HO-Powder AuNPs were prepared as unstabilised (-GA) or stabilized (+GA) by the omission or addition of Gum Arabic (GA) as the capping agent. The characterization of the AuNPs was performed using Transmission Electron Microscopy (TEM), dynamic light scattering (DLS), Ultraviolet-Visual spectroscopy (UV-Vis), Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD) and Zeta-potential. The MBIC50 values for HO-MeOH - GA and HO-MeOH + GA were 1.79 ± 0.78% v/v and 0.22 ± 0.16% v/v, respectively. The HO-Powder AuNPs showed potent inhibition of C. acnes cell adhesion to the 96-well plates. The HO-MeOH - GA and HO-Powder + GA exhibited IC50 of 22.01 ± 6.13% v/v and 11.78 ± 1.78% v/v, respectively. The activity of the AuNPs validated the anti-adhesion activity of the methanol extract in the crude form. The study emphasizes the selectivity of H. odoratissimum AuNPs for the prevention of C. acnes cell adhesion and not antimicrobial activity, which may prevent the emergence of resistant strains of C. acnes through reduced bactericidal or bacteriostatic activity, while targeting mechanisms of pathogenesis.
RESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of death from a single infectious agent worldwide. The high prevalence of this disease is mostly ascribed to the rapid development of drug resistance to the current anti-TB drugs, exacerbated by lack of patient adherence due to drug toxicity. The aforementioned highlights the urgent need for new anti-TB compounds with different antimycobacterial mechanisms of action to those currently being used. An N-alkyl quinolone; decoquinate derivative RMB041, has recently shown promising antimicrobial activity against Mtb, while also exhibiting low cytotoxicity and excellent pharmacokinetic characteristics. Its exact mechanism of action, however, is still unknown. Considering this, we used GCxGC-TOFMS and well described metabolomic approaches to analyze and compare the metabolic alterations of Mtb treated with decoquinate derivative RMB041 by comparison to non-treated Mtb controls. The most significantly altered pathways in Mtb treated with this drug include fatty acid metabolism, amino acid metabolism, glycerol metabolism, and the urea cycle. These changes support previous findings suggesting this drug acts primarily on the cell wall and secondarily on the DNA metabolism of Mtb. Additionally, we identified metabolic changes suggesting inhibition of protein synthesis and a state of dormancy.
RESUMEN
In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.
RESUMEN
Keratinocyte carcinoma (KC) is a form of skin cancer that develops in keratinocytes, which are the predominant cells present in the epidermis layer of the skin. Keratinocyte carcinoma comprises two sub-types, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This review provides a holistic literature assessment of the origin, diagnosis methods, contributing factors, and current topical treatments of KC. Additionally, it explores the increase in KC cases that occurred globally over the past ten years. One of the principal concepts highlighted in this article is the adverse effects linked to conventional treatment methods of KC and how novel treatment strategies that combine phytochemistry and transdermal drug delivery systems offer an alternative approach for treatment. However, more in vitro and in vivo studies are required to fully assess the efficacy, mechanism of action, and safety profile of these phytochemical based transdermal chemotherapeutics.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Fitoquímicos/farmacología , Plantas Medicinales/química , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Variación Biológica Poblacional , Estudios Clínicos como Asunto , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Vías de Administración de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Incidencia , Queratinocitos/patología , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Vigilancia de la Población , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/etiología , Lesiones Precancerosas/metabolismo , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/tratamiento farmacológico , Resultado del TratamientoRESUMEN
Eight prenylated xanthones including four new analogues were extracted and purified from the leaves of Garcinia xipshuanbannaensis. Multiple techniques including UV, 1D and 2D NMR, and HRESIMS were used to determine the structures of the isolated xanthones. These xanthones were evaluated for their cytotoxicity toward human cancer cells, and compound 4 exhibited activity against HeLa cells. A cytotoxic mechanism examination revealed the active compound induced cell apoptosis by arresting the cell cycle, increasing the levels of ROS, and inhibiting the expression of p-STAT3 in HeLa cells. In in vivo zebrafish experiments, compound 4 was found to block tumor proliferation and migration and have antiangiogenetic activity, and thus seems worthy of further laboratory evaluation.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Fitogénicos/farmacología , Garcinia/química , Xantonas/farmacología , Inhibidores de la Angiogénesis/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , China , Células HeLa , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Hojas de la Planta/química , Prenilación , Xantonas/aislamiento & purificación , Ensayos Antitumor por Modelo de Xenoinjerto , Pez CebraRESUMEN
Pigmentation, a process controlled by melanogenesis, plays a vital role in protecting the skin against harmful ultraviolet rays. The level of protection is compromised in case of hypopigmentation. This study aimed to evaluate an Aspalathus linearis extract, fractions and phytoconstituents, for their efficacy on melanogenesis stimulation. Fifteen compounds were kinetically assessed against tyrosinase; the rate-limiting enzyme of melanogenesis. Aspalathin and catechin significantly (p value < 0.001) increased the enzymatic rate, showing 50% stimulatory effects at 119.70 ± 2.06 µg/mL and 143.30 ± 2.74 µg/mL, respectively, by acting as subversive substrates. Five compounds inhibited the enzyme's activity, of which four exhibited competitive inhibition. To investigate the molecular interactions between the compounds and the active site, molecular docking was done, using tyrosinase (PBD: 2Y9X) and tyrosinase related protein 1 (PBD: 5M8P). All the compounds docked successfully with acceptable docking scores. Further quantitative structure-activity relationship analysis identified potential functional groups, linked to the specific activity. The crude extract, its fractions, and compounds exhibited low antiproliferative activity with 50% cell viability at concentrations higher than 100 µg/mL. Finally, both aspalathin and catechin exhibited a significant increase (4.5%) in melanin production at 119.82 µg/mL and 76.92 µg/mL, respectively. This is the first report of A. linearis' compounds on skin re-pigmentation.