Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Immunother Cancer ; 11(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37918918

RESUMEN

BACKGROUND: Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing. METHODS: ID8 tumor cells were injected intraperitoneally into mice. Mice were treated with Th17-DC or conventional DC (cDC) vaccine alone or with immune checkpoint blockade (ICB). Systemic immunity, tumor associated immunity, tumor size and survival were examined using a variety of experimental strategies. RESULTS: Th17-DC vaccines increased Th17 T cells in the tumor microenvironment, reshaped the myeloid microenvironment, and improved mouse survival compared with cDC vaccines. ICB had limited efficacy in OC, but Th17-inducing DC vaccination sensitized it to anti-PD-1 ICB, resulting in durable progression-free survival by overcoming IL-10-mediated resistance. Th17-DC vaccine efficacy, alone or with ICB, was mediated by CD4 T cells, but not CD8 T cells. CONCLUSIONS: These findings emphasize using biologically relevant immune modifiers, like Th17-DC vaccines, in OC treatment to reshape the tumor microenvironment and enhance clinical responses to ICB therapy.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico , Linfocitos T CD8-positivos , Neoplasias Ováricas/terapia , Células Dendríticas , Microambiente Tumoral
2.
Cancer Res Commun ; 3(7): 1224-1236, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448553

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit KRAS-dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored. This study demonstrates that Uro A treatment reduces stromal fibrosis and reinvigorates the adaptive T-cell immune response to overcome resistance to PD-1 blockade in a genetically engineered mouse model (GEMM) of PDAC. Flow cytometric-based analysis of Uro A-treated mouse tumors revealed a significant attenuation of immunosuppressive tumor-associated M2-like macrophages with a concurrent increase in the infiltration of CD4+ and CD8+ T cells with memory-like phenotype along with reduced expression of the exhaustion-associated protein, PD-1. Importantly, the combination of Uro A treatment with anti-PD-1 immunotherapy promoted enhancement of the antitumor response with increased infiltration of CD4+ Th1 cells, ultimately resulting in a remarkable improvement in overall survival in GEMM of PDAC. Overall, our findings provide preclinical evidence for the potential of Uro A as a novel therapeutic agent to increase sensitivity to immunotherapy in PDAC and warrant further mechanistic exploration in preclinical and clinical studies. Significance: Immunotherapeutic agents are ineffective against pancreatic cancer, mainly due to the immunosuppressive tumor microenvironment and stromal desmoplasia. Our current study demonstrates the therapeutic utility of a novel gut microbial metabolite, Uro A, to remodel the stromal-immune microenvironment and improve overall survival with anti-PD-1 therapy in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T CD8-positivos/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Microambiente Tumoral
3.
Gastroenterology ; 163(6): 1593-1612, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35948109

RESUMEN

BACKGROUND & AIMS: We have shown that reciprocally activated rat sarcoma (RAS)/mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and Janus kinase/signal transducer and activator of transcription 3 (STAT3) pathways mediate therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC), while combined MEK and STAT3 inhibition (MEKi+STAT3i) overcomes such resistance and alters stromal architecture. We now determine whether MEKi+STAT3i reprograms the cancer-associated fibroblast (CAF) and immune microenvironment to overcome resistance to immune checkpoint inhibition in PDAC. METHODS: CAF and immune cell transcriptomes in MEKi (trametinib)+STAT3i (ruxolitinib)-treated vs vehicle-treated Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) tumors were examined via single-cell RNA sequencing (scRNAseq). Clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats associated protein 9 silencing of CAF-restricted Map2k1/Mek1 or Stat3, or both, enabled interrogation of CAF-dependent effects on immunologic remodeling in orthotopic models. Tumor growth, survival, and immune profiling via mass cytometry by time-of-flight were examined in PKT mice treated with vehicle, anti-programmed cell death protein 1 (PD-1) monotherapy, and MEKi+STAT3i combined with anti-PD1. RESULTS: MEKi+STAT3i attenuates Il6/Cxcl1-expressing proinflammatory and Lrrc15-expressing myofibroblastic CAF phenotypes while enriching for Ly6a/Cd34-expressing CAFs exhibiting mesenchymal stem cell-like features via scRNAseq in PKT mice. This CAF plasticity is associated with M2-to-M1 reprogramming of tumor-associated macrophages, and enhanced trafficking of cluster of differentiation 8+ T cells, which exhibit distinct effector transcriptional programs. These MEKi+STAT3i-induced effects appear CAF-dependent, because CAF-restricted Mek1/Stat3 silencing mitigates inflammatory-CAF polarization and myeloid infiltration in vivo. Addition of MEKi+STAT3i to PD-1 blockade not only dramatically improves antitumor responses and survival in PKT mice but also augments recruitment of activated/memory T cells while improving their degranulating and cytotoxic capacity compared with anti-PD-1 monotherapy. Importantly, treatment of a patient who has chemotherapy-refractory metastatic PDAC with MEKi (trametinib), STAT3i (ruxolitinib), and PD-1 inhibitor (nivolumab) yielded clinical benefit. CONCLUSIONS: Combined MEKi+STAT3i mitigates stromal inflammation and enriches for CAF phenotypes with mesenchymal stem cell-like properties to overcome immunotherapy resistance in PDAC.


Asunto(s)
Adenocarcinoma , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Células Madre Mesenquimatosas , Neoplasias Pancreáticas , Ratones , Animales , Factor de Transcripción STAT3/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inmunoterapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Factores Inmunológicos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679922

RESUMEN

The advent of novel immunotherapies in the treatment of cancers has dramatically changed the landscape of the oncology field. Recent developments in checkpoint inhibition therapies, tumor-infiltrating lymphocyte therapies, chimeric antigen receptor T cell therapies, and cancer vaccines have shown immense promise for significant advancements in cancer treatments. Immunotherapies act on distinct steps of immune response to augment the body's natural ability to recognize, target, and destroy cancerous cells. Combination treatments with immunotherapies and other modalities intend to activate immune response, decrease immunosuppression, and target signaling and resistance pathways to offer a more durable, long-lasting treatment compared to traditional therapies and immunotherapies as monotherapies for cancers. This review aims to briefly describe the rationale, mechanisms of action, and clinical efficacy of common immunotherapies and highlight promising combination strategies currently approved or under clinical development. Additionally, we will discuss the benefits and limitations of these immunotherapy approaches as monotherapies as well as in combination with other treatments.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/terapia , Animales , Vacunas contra el Cáncer/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad , Neoplasias/inmunología , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Linfocitos T/inmunología
5.
Molecules ; 25(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630150

RESUMEN

Tuberculosis (TB), caused by the bacterial organism Mycobacterium tuberculosis, pose a major threat to public health, especially in middle and low-income countries. Worldwide in 2018, approximately 10 million new cases of TB were reported to the World Health Organization (WHO). There are a limited number of medications available to treat TB; additionally, multi-drug resistant TB and extensively-drug resistant TB strains are becoming more prevalent. As a result of various factors, such as increased costs of developing new medications and adverse side effects from current medications, researchers continue to evaluate natural compounds for additional treatment options. These substances have the potential to target bacterial cell structures and may contribute to successful treatment. For example, a study reported that green and black tea, which contains epigallocatechin gallate (a phenolic antioxidant), may decrease the risk of contracting TB in experimental subjects; cumin (a seed from the parsley plant) has been demonstrated to improve the bioavailability of rifampicin, an important anti-TB medication, and propolis (a natural substance produced by honeybees) has been shown to improve the binding affinity of anti-TB medications to bacterial cell structures. In this article, we review the opportunistic pathogen M. tuberculosis, various potential therapeutic targets, available therapies, and natural compounds that may have anti-TB properties. In conclusion, different natural compounds alone as well as in combination with already approved medication regimens should continue to be investigated as treatment options for TB.


Asunto(s)
Antituberculosos/uso terapéutico , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/prevención & control , Antituberculosos/química , Humanos , Tuberculosis/microbiología
6.
Cancers (Basel) ; 12(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380712

RESUMEN

Colorectal cancer (CRC) is one of the most common types of cancer worldwide. There are many factors that predispose a patient to the disease such as age, family history, ethnicity, and lifestyle. There are different genetic factors and diseases that also increase a person's risk for developing CRC. Studies have found associations between gut microbiome and the risk for developing versus protection against CRC. Normal gut microbiome aid in daily functions of the human body such as absorption, metabolism, detoxification, and regulation of inflammation. While some species of bacteria prevent CRC development and aid in therapeutic responses to various treatment regiments, other species seem to promote CRC pathogenesis. In this regard, many studies have been conducted to not only understand the biology behind these opposing different bacterial species; but also to determine if supplementation of these tumor opposing bacterial species as probiotics lends toward decreased risk of CRC development and improved therapeutic responses in patients with CRC. In this literature review, we aim to discuss the basics on colorectal cancer (epidemiology, risk factors, targets, treatments), discuss associations between different bacterial strains and CRC, and discuss probiotics and their roles in CRC prevention and treatment.

7.
Transl Oncol ; 13(3): 100738, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32114384

RESUMEN

The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints' ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.

8.
Medicines (Basel) ; 6(3)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373327

RESUMEN

Checkpoint inhibition (CPI) therapies have been proven to be powerful clinical tools in treating cancers. FDA approvals and ongoing clinical development of checkpoint inhibitors for treatment of various cancers highlight the immense potential of checkpoint inhibitors as anti-cancer therapeutics. The occurrence of immune-related adverse events, however, is a major hindrance to the efficacy and use of checkpoint inhibitors as systemic therapies in a wide range of patients. Hence, methods of sustained and tumor-targeted delivery of checkpoint inhibitors are likely to improve efficacy while also decreasing toxic side effects. In this review, we summarize the findings of the studies that evaluated methods of tumor-targeted delivery of checkpoint inhibitors, review their strengths and weaknesses, and discuss the outlook for therapeutic use of these delivery methods.

9.
Mol Cancer Ther ; 18(2): 301-311, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30404927

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy and is highly resistant to standard treatment regimens. Targeted therapies against KRAS, a mutation present in an overwhelming majority of PDAC cases, have been largely ineffective. However, inhibition of downstream components in the KRAS signaling cascade provides promising therapeutic targets in the management of PDAC and warrants further exploration. Here, we investigated Urolithin A (Uro A), a novel natural compound derived from pomegranates, which targets numerous kinases downstream of KRAS, in particular the PI3K/AKT/mTOR signaling pathways. We showed that treatment of PDAC cells with Uro A blocked the phosphorylation of AKT and p70S6K in vitro, successfully inhibited the growth of tumor xenografts, and increased overall survival of Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mice compared with vehicle or gemcitabine therapy alone. Histologic evaluation of these Uro A-treated tumor samples confirmed mechanistic actions of Uro A via decreased phosphorylation of AKT and p70S6K, reduced proliferation, and increased cellular apoptosis in both xenograft and PKT mouse models. In addition, Uro A treatment reprogrammed the tumor microenvironment, as evidenced by reduced levels of infiltrating immunosuppressive cell populations such as myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Overall, this work provides convincing preclinical evidence for the utility of Uro A as a therapeutic agent in PDAC through suppression of the PI3K/AKT/mTOR pathway.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Cumarinas/administración & dosificación , Lythraceae/química , Neoplasias Pancreáticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cumarinas/farmacología , Humanos , Ratones , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Medicines (Basel) ; 5(4)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360504

RESUMEN

Checkpoint inhibition (CPI) has been a rare success story in the field of cancer immunotherapy. Knowledge gleaned from preclinical studies and patients that do not respond to these therapies suggest that the presence of tumor-infiltrating lymphocytes and establishment of immunostimulatory conditions, prior to CPI treatment, are required for efficacy of CPI. To this end, radiation therapy (RT) has been shown to promote immunogenic cell-death-mediated tumor-antigen release, increase infiltration and cross-priming of T cells, and decreasing immunosuppressive milieu in the tumor microenvironment, hence allowing CPI to take effect. Preclinical and clinical studies evaluating the combination of RT with CPI have been shown to overcome the resistance to either therapy alone. Additionally, nanoparticle and liposome-mediated delivery of checkpoint inhibitors has been shown to overcome toxicities and improve therapeutic efficacy, providing a rationale for clinical investigations of nanoparticle, microparticle, and liposomal delivery of checkpoint inhibitors. In this review, we summarize the preclinical and clinical studies of combined RT and CPI therapies in various cancers, and review findings from studies that evaluated nanoparticle and liposomal delivery of checkpoint inhibitors for cancer treatments.

11.
Cancer Res ; 78(21): 6146-6158, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30232221

RESUMEN

Although smoking is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC), the molecular mechanisms underlying PDAC development and progression in smokers are still unclear. Here, we show the role of cyclic AMP response element-binding protein (CREB) in the pathogenesis of smoking-induced PDAC. Smokers had significantly higher levels of activated CREB when compared with nonsmokers. Cell lines derived from normal pancreas and pancreatic intraepithelial neoplasm (PanIN) exhibited low baseline pCREB levels compared with PDAC cell lines. Furthermore, elevated CREB expression correlated with reduced survival in patients with PDAC. Depletion of CREB significantly reduced tumor burden after tobacco-specific nitrosamine 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) treatment, suggesting a CREB-dependent contribution to PDAC growth and progression in smokers. Conversely, NNK accelerated PanIN lesion and PDAC formation via GM-CSF-mediated activation of CREB in a PDAC mouse model. CREB inhibition (CREBi) in mice more effectively reduced primary tumor burden compared with control or GM-CSF blockade alone following NNK exposure. GM-CSF played a role in the recruitment of tumor-associated macrophages (TAM) and regulatory T cell (Treg) expansion and promotion, whereas CREBi significantly reduced TAM and Treg populations in NNK-exposed mice. Overall, these results suggest that NNK exposure leads to activation of CREB through GM-CSF, promoting inflammatory and Akt pathways. Direct inhibition of CREB, but not GM-CSF, effectively abrogates these effects and inhibits tumor progression, offering a viable therapeutic strategy for patients with PDAC.Significance: These findings identify GM-CSF-induced CREB as a driver of pancreatic cancer in smokers and demonstrate the therapeutic potential of targeting CREB to reduce PDAC tumor growth.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6146/F1.large.jpg Cancer Res; 78(21); 6146-58. ©2018 AACR.


Asunto(s)
Carcinógenos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Nicotiana/efectos adversos , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Sistema Inmunológico , Macrófagos/metabolismo , Ratones , Ratones Desnudos , Ratones Transgénicos , Trasplante de Neoplasias , Nitrosaminas/química , Neoplasias Pancreáticas/etiología , ARN Interferente Pequeño/metabolismo , Factores de Riesgo , Fumar/efectos adversos
12.
Cancer Res ; 78(21): 6235-6246, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30154150

RESUMEN

Major contributors to therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) include Kras mutations, a dense desmoplastic stroma that prevents drug delivery to the tumor, and activation of redundant signaling pathways. We have previously identified a mechanistic rationale for targeting STAT3 signaling to overcome therapeutic resistance in PDAC. In this study, we investigate the molecular mechanisms underlying the heterogeneous response to STAT3 and RAS pathway inhibition in PDAC. Effects of JAK/STAT3 inhibition (STAT3i) or MEK inhibition (MEKi) were established in Ptf1acre/+; LSL-KrasG12D/+ ; and Tgfbr2flox/flox (PKT) mice and patient-derived xenografts (PDX). Amphiregulin (AREG) levels were determined in serum from human patients with PDAC, LSL-KrasG12D/+;Trp53R172H/+;Pdx1Cre/+ (KPC), and PKT mice. MEKi/STAT3i-treated tumors were analyzed for integrity of the pancreas and the presence of cancer stem cells (CSC). We observed an inverse correlation between ERK and STAT3 phosphorylation. MEKi resulted in an immediate activation of STAT3, whereas STAT3i resulted in TACE-induced, AREG-dependent activation of EGFR and ERK. Combined MEKi/STAT3i sustained blockade of ERK, EGFR, and STAT3 signaling, overcoming resistance to individual MEKi or STAT3i. This combined inhibition attenuated tumor growth in PDX and increased survival of PKT mice while reducing serum AREG levels. Furthermore, MEKi/STAT3i altered the PDAC tumor microenvironment by depleting tumor fibrosis, maintaining pancreatic integrity, and downregulating CD44+ and CD133+ CSCs. These results demonstrate that resistance to MEKi is mediated through activation of STAT3, whereas TACE-AREG-EGFR-dependent activation of RAS pathway signaling confers resistance to STAT3 inhibition. Combined MEKi/STAT3i overcomes these resistances and provides a novel therapeutic strategy to target the RAS and STAT3 pathway in PDAC.Significance: This report describes an inverse correlation between MEK and STAT3 signaling as key mechanisms of resistance in PDAC and shows that combined inhibition of MEK and STAT3 overcomes this resistance and provides an improved therapeutic strategy to target the RAS pathway in PDAC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6235/F1.large.jpg Cancer Res; 78(21); 6235-46. ©2018 AACR.


Asunto(s)
MAP Quinasa Quinasa 1/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas ras/metabolismo , Anfirregulina/metabolismo , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Ratones , Ratones Desnudos , Mutación , Trasplante de Neoplasias , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Análisis de Matrices Tisulares , Microambiente Tumoral
13.
Cancer Res ; 77(23): 6667-6678, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993412

RESUMEN

Ligation of programmed cell death-1 (PD-1) in the tumor microenvironment is known to inhibit effective adaptive antitumor immunity. Blockade of PD-1 in humans has resulted in impressive, durable regression responses in select tumor types. However, durable responses have been elusive in ovarian cancer patients. PD-1 was recently shown to be expressed on and thereby impair the functions of tumor-infiltrating murine and human myeloid dendritic cells (TIDC) in ovarian cancer. In the present work, we characterize the regulation of PD-1 expression and the effects of PD-1 blockade on TIDC. Treatment of TIDC and bone marrow-derived dendritic cells (DC) with IL10 led to increased PD-1 expression. Both groups of DCs also responded to PD-1 blockade by increasing production of IL10. Similarly, treatment of ovarian tumor-bearing mice with PD-1 blocking antibody resulted in an increase in IL10 levels in both serum and ascites. While PD-1 blockade or IL10 neutralization as monotherapies were inefficient, combination of these two led to improved survival and delayed tumor growth; this was accompanied by augmented antitumor T- and B-cell responses and decreased infiltration of immunosuppressive MDSC. Taken together, our findings implicate compensatory release of IL10 as one of the adaptive resistance mechanisms that undermine the efficacy of anti-PD-1 (or anti-PD-L1) monotherapies and prompt further studies aimed at identifying such resistance mechanisms. Cancer Res; 77(23); 6667-78. ©2017 AACR.


Asunto(s)
Interleucina-10/metabolismo , Interleucina-10/farmacología , Neoplasias Ováricas/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/biosíntesis , Animales , Linfocitos B/inmunología , Línea Celular Tumoral , Células Dendríticas/inmunología , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/tratamiento farmacológico , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Linfocitos T/inmunología , Microambiente Tumoral/inmunología
15.
Cancer Res ; 76(2): 239-50, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26567141

RESUMEN

The PD-1:PD-L1 immune signaling axis mediates suppression of T-cell-dependent tumor immunity. PD-1 expression was recently found to be upregulated on tumor-infiltrating murine (CD11c(+)CD11b(+)CD8(-)CD209a(+)) and human (CD1c(+)CD19(-)) myeloid dendritic cells (TIDC), an innate immune cell type also implicated in immune escape. However, there is little knowledge concerning how PD-1 regulates innate immune cells. In this study, we examined the role of PD-1 in TIDCs derived from mice bearing ovarian tumors. Similar to lymphocytes, TIDC expression of PD-1 was associated with expression of the adapter protein SHP-2, which signals to NF-κB; however, in contrast to its role in lymphocytes, we found that expression of PD-1 in TIDC tonically paralyzed NF-κB activation. Further mechanistic investigations showed that PD-1 blocked NF-κB-dependent cytokine release in a SHP-2-dependent manner. Conversely, inhibition of NF-κB-mediated antigen presentation by PD-1 occurred independently of SHP-2. Collectively, our findings revealed that PD-1 acts in a distinct manner in innate immune cells compared with adaptive immune cells, prompting further investigations of the signaling pathways controlled by this central mediator of immune escape in cancer.


Asunto(s)
Células Dendríticas/inmunología , FN-kappa B/metabolismo , Neoplasias Ováricas/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/patología , Transducción de Señal
16.
J Immunol ; 194(7): 2985-91, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795789

RESUMEN

Dendritic cells (DCs) play a pivotal role in the tumor microenvironment, which is known to affect disease progression in many human malignancies. Infiltration by mature, active DCs into the tumors confers an increase in immune activation and recruitment of disease-fighting immune effector cells and pathways. DCs are the preferential target of infiltrating T cells. However, tumor cells have means of suppressing DC function or of altering the tumor microenvironment in such a way that immune-suppressive DCs are recruited. Advances in understanding these changes have led to promising developments in cancer-therapeutic strategies targeting tumor-infiltrating DCs to subdue their immunosuppressive functions and enhance their immune-stimulatory capacity.


Asunto(s)
Células Dendríticas/inmunología , Neoplasias/etiología , Inmunidad Adaptativa , Animales , Células Dendríticas/metabolismo , Células Dendríticas/patología , Humanos , Tolerancia Inmunológica , Inmunoterapia , Neoplasias/patología , Neoplasias/terapia , Fenotipo , Factores de Transcripción/metabolismo
17.
Cancer Metastasis Rev ; 34(1): 53-74, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25544369

RESUMEN

Clinical outcomes, such as recurrence-free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathological network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Microambiente Tumoral/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Modelos Inmunológicos , Terapia Molecular Dirigida/métodos
18.
Cancer Res ; 74(11): 2974-85, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24728077

RESUMEN

Immunosuppression in the tumor microenvironment blunts vaccine-induced immune effectors. PD-1/B7-H1 is an important inhibitory axis in the tumor microenvironment. Our goal in this study was to determine the effect of blocking this inhibitory axis during and following vaccination against breast cancer. We observed that using anti-PD-1 antibody and a multipeptide vaccine (consisting of immunogenic peptides derived from breast cancer antigens, neu, legumain, and ß-catenin) as a combination therapy regimen for the treatment of breast cancer-bearing mice prolonged the vaccine-induced progression-free survival period. This prolonged survival was associated with increase in number of Tc1 and Tc2 CD8 T cells with memory precursor phenotype, CD27+IL-7RhiT-betlo, and decrease in number of PD-1+ dendritic cells (DC) in regressing tumors and enhanced antigen reactivity of tumor-infiltrating CD8 T cells. It was also observed that blockade of PD-1 on tumor DCs enhanced IL-7R expression on CD8 T cells. Taken together, our results suggest that PD-1 blockade enhances breast cancer vaccine efficacy by altering both CD8 T cell and DC components of the tumor microenvironment. Given the recent success of anti-PD-1 monotherapy, our results are encouraging for developing combination therapies for the treatment of patients with cancer in which anti-PD-1 monotherapy alone may be ineffective (i.e., PD-L1-negative tumors).


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Memoria Inmunológica/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Supervivencia sin Enfermedad , Femenino , Memoria Inmunológica/efectos de los fármacos , Mastocitoma/inmunología , Mastocitoma/terapia , Ratones , Ratones Endogámicos BALB C , Receptores de Interleucina-7/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA