Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(59): 88866-88881, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35842513

RESUMEN

Tuning morphology and doping additional rare earth (RE) cations are potential techniques to promote the photocatalytic performance of ceria (CeO2), evaluating the collaborative effects of morphology and RE dopants is significant for producing high active ceria-based catalysts. So in this work, cubic, polyhedral and rod-like nanoceria doped with 10 mol % La (lanthanum), Y (yttrium), or Sm (samarium) were synthesized by a facile template-free hydrothermal method. Phases, morphologies, oxygen vacancies (OVs) concentration, energy band structure, photo-carriers separation/recombination, and photodegradation ratio toward methylene blue (MB) dye of as prepared ceria were studied. Results show that doped CeO2 maintains a similar morphology structure with un-doped sample and the band gap narrows slightly. Y-doped nanoceria, with an improved separation and a reduced recombination of photo-excited electrons (e-) and holes (h+), owns a higher MB photodegradation ratio than that of samples doping with La or Sm, which is measured as 79.04, 84.43, and 85.59% for Y-doped cubic, polyhedral, and rod-like CeO2. The collaborative influence of morphology tuning and RE (La, Y, and Sm) doping on photocatalytic performance of nanoceria includes the effects of doped elements and the formation of OVs. The elevation of OVs concentration as well as the separation efficiency of photo-generated e-/h+ are suggested to further enhance the photocatalytic performance of ceria.

2.
Nanotechnology ; 32(19): 195708, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33629667

RESUMEN

Morphological tuning or additional cation doping is one of the potential and simple methods to enhance the photocatalytic properties of ceria, in which rare-earth element doped ceria nanorods (CeO2-RE NRs) are expected to be a promising photocatalyst with high activity. But the optimal doping conditions, including the variety and concentration of RE elements are ambiguous, and the contribution of doped RE ions to the enhancement of photocatalytic activity needs to be further studied. In this work, we doped La, Y and Sm with a wide range of 0%-30% into CeO2 NRs, and investigated the phase, morphology, band gap, oxygen vacancy concentration, PL spectra and photocatalytic activity variation under different doping conditions. All synthesized CeO2-RE NRs possessed a good nanorod morphology except the 15 and 30% Y-doped samples. The energy band gaps of the synthesized samples changed slightly; the 10% CeO2-RE NRs with the narrowest band gaps possessed the higher photocatalytic performance. The most outstanding photocatalyst was found to be the 10% Y-doped CeO2 NRs with a methylene blue photodegradation ratio of 85.59% and rate constant of 0.0134 min-1, which is particularly associated with a significant higher oxygen vacancy concentration and obviously lower recombination rate of photogenerated e-/h+ pairs. The doped RE ions and the promotion of oxygen vacancy generation impede the recombination of photogenerated carriers, which is proposed as the main reason to enhance the photocatalytic property of CeO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA