Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurosci Lett ; 793: 136973, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36414134

RESUMEN

Estrogen receptors (ERα and ERß) are crucial for the regulation of socio-sexual behaviors and the organization of sex-specific neural networks in the developing brain. However, how the distribution patterns of ERα and ERß change throughout life is unclear. Using genetically modified ERß-RFPtg mice, we investigated the distribution of ERα, ERß, and their colocalization in the ventromedial nucleus of the hypothalamus (VMH), anteroventral periventricular nucleus (AVPV), and bed nucleus of stria terminalis (BNST) from postnatal days (PD) 0 to 56. ERα expression was higher in females that showed an increase after PD14 in all brain regions, whereas ERß-RFP expression pattern was markedly different among the regions. In the VMH, ERß-RFP was highly expressed on PD0 and PD7 but decreased drastically to very low expression afterward in both sexes. In contrast, ERß-RFP expression was higher in females compared to males in the AVPV but lower in the BNST throughout life especially late- and post-pubertal periods. Our results demonstrating that ERα and ERß-RFP expression changed in a sex-, age- and region-specific manner contribute to further clarification of the mechanisms underlying estrogen-dependent organization of the brain in both sexes.


Asunto(s)
Receptor alfa de Estrógeno , Núcleos Septales , Masculino , Femenino , Animales , Ratones , Receptor alfa de Estrógeno/metabolismo , Receptores de Estrógenos/metabolismo , Receptor beta de Estrógeno/metabolismo , Hipotálamo/metabolismo , Núcleos Septales/metabolismo
2.
Nutrients ; 12(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823489

RESUMEN

The adipocyte-derived hormone leptin is a potent neurotrophic factor that contributes to the neural plasticity and development of feeding circuitry, particularly in the arcuate nucleus of the hypothalamus (ARH). Postnatal overnutrition affects leptin secretion and sensitivity, but whether postnatal overnutrition produces changes in the development of the synaptic transmission to ARH neurons is currently unknown. We evaluated the excitatory and inhibitory currents to ARH leptin receptor (LepR)-expressing neurons in prepubertal, pubertal and adult female mice. The effects of postnatal overnutrition in the expression of genes that code ion channels subunits in the ARH were also evaluated. We observed that the transition from prepubertal to pubertal stage is characterized by a rise in both excitatory and inhibitory transmission to ARH LepR-expressing neurons in control mice. Postnatal overnutrition induces a further increase in the excitatory synaptic transmission in pubertal and adult animals, whereas the amplitude of inhibitory currents to ARH LepR-expressing cells was reduced. Postnatal overnutrition also contributes to the modulation of gene expression of N-methyl-D-aspartate, GABAB and ATP-sensitive potassium channel subunits in ARH. In summary, the synaptic transmission to ARH cells is profoundly influenced by postnatal overnutrition. Thus, increased adiposity during early postnatal period induces long-lasting effects on ARH cellular excitability.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas/metabolismo , Hipernutrición/metabolismo , Periodo Posparto/metabolismo , Transmisión Sináptica/fisiología , Adiposidad/fisiología , Animales , Femenino , Expresión Génica , Ratones , Embarazo , Receptores de Leptina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA