Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Phycol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837905

RESUMEN

Four species of the genus Wrangelia are presently known from the western Atlantic Ocean: W. argus, W. bicuspidata, W. penicillata, and W. gordoniae, with the first three historically being reported from Bermuda. Morphological and molecular barcode (COI-5P) and phylogenetic analyses used in this study (SSU, LSU, rbcL) indicated eight species groupings of Wrangelia in Bermuda, excluding two of the historically recognized species, retaining only W. argus while adding seven new species, of which six are formally described. What had been historically reported as W. penicillata from Bermuda was shown to be distinct from Mediterranean Sea specimens (type locality) and was shown to be a mixture of W. hesperia sp. nov. and W. incrassata sp. nov. Along with these two, three other new species (W. laxa sp. nov., W. ryancraigii sp. nov., and W. secundiramea sp. nov.) have complete rhizoidal cortication tightly covering axial cells of indeterminate axes below the apices, distinguishing them from the two local incompletely corticated congeners W. argus and W. abscondita sp. nov., the latter a morphologically cryptic sister species with W. bicuspidata from the Caribbean Sea. Only one of the new species, W. ryancraigii, has thus far been observed in the mesophotic zone off the Bermuda platform, and it is morphologically cryptic with the euphotic zone's W. laxa.

2.
J Phycol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38817114

RESUMEN

Biogeographic structure in marine protist communities is shaped by a combination of dispersal potential and environmental selection. High-throughput sequencing and global sampling efforts have helped better resolve the composition and functions of these communities in the world's oceans using both molecular and visual methods. However, molecular barcoding data are critically lacking across the Indo-Pacific, a region widely considered the epicenter of marine biodiversity. To fill this gap, we characterized protist communities in four sampling regions across Indonesia that represent the latitudinal, longitudinal, and human population gradients of the region: Lombok, Wakatobi, Misool, and Waigeo. We show high spatial structuring in marine protist communities across Indonesia, and biotic factors appear to play little role in driving this observed structure. Our results appear to be driven by abiotic factors linked to surface current patterns across the Indo-Pacific as a result of: (1) a choke point in circulation at the Indonesian Throughflow leading to low diatom diversity in Lombok, Wakatobi, and Misool; (2) an increase in nutrient availability at the edge of the Halmahera Eddy in Waigeo, leading to an increase in diatom diversity; and/or (3) seasonal variations in protist communities in line with shifts in velocity of the Indonesian Throughflow. Overall, our results highlight the importance of abiotic factors in shaping protist communities on broad geographic scales over biotic, top-down pressures, such as grazing from higher trophic levels.

3.
J Eukaryot Microbiol ; 70(2): e12954, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36401815

RESUMEN

The Coral Triangle encompasses nearly 30% of the world's coral reefs and is widely considered the epicenter of marine biodiversity. Destructive fishing practices and natural disturbances common to this region damage reefs leaving behind fields of coral rubble. While the impacts of disturbances in these ecosystems are well documented on metazoans, we have a poor understanding of their impact on microbial communities at the base of the food web. We use metabarcoding to characterize protist community composition in sites of varying fisheries management schemes and benthic profiles across the island of Lombok, Indonesia. Our study shows that rubble coverage and net primary productivity are the strongest explainers of variation in protist communities across Lombok. More specifically, rubble fields are characterized by increases in small heterotrophic protists, including ciliates and cercozoans. In addition to shifts in heterotrophic protist communities, we also observed increases in diatom relative abundance in rubble fields, which corresponded to sites with higher net primary productivity. These results are the first to characterize protist communities in tropical marine rubble fields and provide insight on environmental factors potentially driving these shifts on a local scale.


Asunto(s)
Antozoos , Microbiota , Animales , Ecosistema , Plancton , Indonesia , Arrecifes de Coral , Biodiversidad
4.
Curr Biol ; 32(13): 2948-2955.e4, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35643082

RESUMEN

Symbiosis is one of the most important evolutionary processes shaping the biodiversity on Earth. Symbiotic associations often bring together organisms from different domains of life, which can provide an unparalleled route to evolutionary innovation.1-4 The phylum Apicomplexa encompasses 6,000 ubiquitous animal parasites; however, species in the recently described apicomplexan family, Nephromycidae, are reportedly non-virulent.5,6 The members of the genus Nephromyces live within a specialized organ of tunicates, called the renal sac, in which they use concentrated uric acid as a primary nitrogen source.7,8 Here, we report genomic and transcriptomic data from the diverse genus Nephromyces, as well as the three bacterial symbionts that live within this species complex. We show that the diversity of Nephromyces is unexpectedly high within each renal sac, with as many as 20 different species inhabiting the renal sacs in wild populations. The many species of Nephromyces can host three different types of bacterial endosymbionts; however, FISH microscopy allowed us to demonstrate that each individual Nephromyces cell hosts only a single bacterial type. Through the reconstruction and analyses of the endosymbiont bacterial genomes, we infer that each bacterial type supplies its host with different metabolites. No individual species of Nephromyces, in combination with its endosymbiont, can produce a complete set of essential amino acids, and culture experiments demonstrate that individual Nephromyces species cannot form a viable infection. Therefore, we hypothesize that Nephromyces spp. depend on co-infection with congeners containing different bacterial symbionts in order to exchange metabolites to meet their needs.


Asunto(s)
Apicomplexa , Urocordados , Animales , Bacterias/genética , Codependencia Psicológica , Genoma Bacteriano , Filogenia , Simbiosis , Urocordados/genética
5.
Zootaxa ; 5048(1): 99-117, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34810814

RESUMEN

Previous work, using morphological characters, identified a generalist copepod parasite (Pharodes tortugensis) at high prevalence on two common gobies (Coryphopterus glaucofraenum and C. dicrus) in the British Virgin Islands (BVI). DNA barcoding subsequently revealed C. glaucofraenum to be three morphologically similar species (C. glaucofraenum, C. venezuelae and C. tortugae), casting doubt on host identities in the BVI and the classification of the parasite as a single species. Mitochondrial cytochrome c oxidase subunit I (COI) data from 67 gobies in the BVI showed that, in addition to C. dicrus, host gobies were a mix of C. glaucofraenum and C. venezuelae, while C. tortugae was unexpectedly absent from the study area. COI data (n = 70) indicated that the copepod infecting all three hosts was a single species, almost certainly P. tortugensis. The pharodes-coryphopterus interaction has a strong impact on host dynamics in the BVI, and a revised understanding of these dynamics must account for any differences among the three newly confirmed hosts in transmission of, and susceptibility to, the shared parasite. No other infected hosts were discovered at our sites, but P. tortugensis is reportedly widespread and infects 12 additional host species elsewhere. Further DNA barcoding is thus needed to test whether P. tortugensis is truly a widespread generalist, or instead represents a group of more specialized cryptic species.


Asunto(s)
Copépodos , Parásitos , Perciformes , Animales , Copépodos/genética , Código de Barras del ADN Taxonómico , Interacciones Huésped-Parásitos , Perciformes/genética , Filogenia
6.
Immunohorizons ; 5(5): 322-335, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001652

RESUMEN

SARS-CoV-2 has caused over 100,000,000 cases and almost 2,500,000 deaths globally. Comprehensive assessment of the multifaceted antiviral Ab response is critical for diagnosis, differentiation of severity, and characterization of long-term immunity, especially as COVID-19 vaccines become available. Severe disease is associated with early, massive plasmablast responses. We developed a multiplex immunoassay from serum/plasma of acutely infected and convalescent COVID-19 patients and prepandemic and postpandemic healthy adults. We measured IgA, IgG, and/or IgM against SARS-CoV-2 nucleocapsid (N), spike domain 1 (S1), S1-receptor binding domain (RBD) and S1-N-terminal domain. For diagnosis, the combined [IgA + IgG + IgM] or IgG levels measured for N, S1, and S1-RBD yielded area under the curve values ≥0.90. Virus-specific Ig levels were higher in patients with severe/critical compared with mild/moderate infections. A strong prozone effect was observed in sera from severe/critical patients-a possible source of underestimated Ab concentrations in previous studies. Mild/moderate patients displayed a slower rise and lower peak in anti-N and anti-S1 IgG levels compared with severe/critical patients, but anti-RBD IgG and neutralization responses reached similar levels at 2-4 mo after symptom onset. Measurement of the Ab responses in sera from 18 COVID-19-vaccinated patients revealed specific responses for the S1-RBD Ag and none against the N protein. This highly sensitive, SARS-CoV-2-specific, multiplex immunoassay measures the magnitude, complexity, and kinetics of the Ab response and can distinguish serum Ab responses from natural SARS-CoV-2 infections (mild or severe) and mRNA COVID-19 vaccines.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19/administración & dosificación , COVID-19 , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Vacunación , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/inmunología , COVID-19/prevención & control , Femenino , Humanos , Inmunoensayo , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
7.
BMC Biol ; 19(1): 77, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863338

RESUMEN

BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.


Asunto(s)
Apicomplexa , Mitocondrias , Animales , Apicomplexa/genética , Humanos , Mitocondrias/genética , Filogenia , Análisis de la Célula Individual , Transcriptoma
9.
Front Microbiol ; 11: 580719, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335517

RESUMEN

Apicomplexa is a diverse protistan phylum composed almost exclusively of metazoan-infecting parasites, including the causative agents of malaria, cryptosporidiosis, and toxoplasmosis. A single apicomplexan genus, Nephromyces, was described in 2010 as a mutualist partner to its tunicate host. Here we present genomic and transcriptomic data from the parasitic sister species to this mutualist, Cardiosporidium cionae, and its associated bacterial endosymbiont. Cardiosporidium cionae and Nephromyces both infect tunicate hosts, localize to similar organs within these hosts, and maintain bacterial endosymbionts. Though many other protists are known to harbor bacterial endosymbionts, these associations are completely unknown in Apicomplexa outside of the Nephromycidae clade. Our data indicate that a vertically transmitted α-proteobacteria has been retained in each lineage since Nephromyces and Cardiosporidium diverged. This α-proteobacterial endosymbiont has highly reduced metabolic capabilities, but contributes the essential amino acid lysine, and essential cofactor lipoic acid to C. cionae. This partnership likely reduces resource competition with the tunicate host. However, our data indicate that the contribution of the single α-proteobacterial endosymbiont in C. cionae is minimal compared to the three taxa of endosymbionts present in the Nephromyces system, and is a potential explanation for the virulence disparity between these lineages.

10.
J Agric Food Chem ; 68(52): 15516-15525, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33334103

RESUMEN

Seaweeds have been consumed by billions of people around the world and are increasingly popular in United States (US) diets. Some seaweed species have been associated with adverse health effects-such as heavy metal toxicity-and higher priced seaweeds may be more prone to adulteration. Knowing which species of seaweeds are being marketed in the US is important for protecting human health and preventing economic adulteration. Therefore, the United States Food and Drug Administration is developing new DNA-based species identification tools to complement established chemical methods for verifying the accurate labeling of products. Here, seaweed products available in the United States were surveyed using a tiered approach to evaluate a variety of DNA extraction techniques followed by traditional DNA barcoding via Sanger sequencing; if needed, genome skimming of total extracted nuclear DNA via next-generation sequencing was performed. This two-tiered approach of DNA barcoding and genome skimming could identify most seaweed samples (41/46), even those in blends (2/2, 1 out of 3 labeled species in each). Only two commercial samples appeared to be mislabeled or to contain unintended algal species. Five samples, labeled as "hijiki" or "arame", could not be confirmed by these DNA-based identification methods.


Asunto(s)
Algas Marinas/genética , Verduras/genética , ADN de Plantas/genética , Etiquetado de Alimentos , Inocuidad de los Alimentos , Genoma de Planta , Algas Marinas/clasificación , Análisis de Secuencia de ADN , Estados Unidos , Verduras/clasificación
11.
Nat Microbiol ; 5(8): 987-994, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514073

RESUMEN

The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Archaea/genética , Bacterias/genética , ADN Bacteriano , Metagenoma , Filogenia , Células Procariotas/clasificación , Análisis de Secuencia de ADN , Terminología como Asunto
12.
J Phycol ; 56(3): 833-835, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32160315

RESUMEN

In response to a comment in this issue on our proposal of new terminology to distinguish red algal parasites, we clarify a few key issues. The terms adelphoparasite and alloparasite were previously used to identify parasites that infected close or distant relatives. However, most red algal parasites have only been studied morphologically, and molecular tools have shown that these binary terms do a poor job at representing the range of parasite-host relationships. We recognize the need to clarify inferred misconceptions that appear to be drawing from historical terminology to contaminate our new definitions. We did not intend to replace the term adelphoparasite with neoplastic parasites and the term alloparasites with archaeplastic parasites. Rather, we seek to establish new terms for discussing red algal parasites, based on the retention of a native plastid, a binary biological trait that is relatively easy to identify using modern methods and has biological implications for the interactions between a parasite and its host. The new terminology can better account for the spectrum of relationships and developmental patterns found among the many independently evolved red algal parasites, and it is intended to inspire new research, particularly the role of plastids in the survival and evolution of red algal parasites.


Asunto(s)
Parásitos , Rhodophyta , Animales , Filogenia , Plastidios , Simbiosis
13.
Genome Biol Evol ; 11(10): 2727-2740, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31328784

RESUMEN

A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to 1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, 2) search for the apicoplast genome of Nephromyces, and 3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the nonphotosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


Asunto(s)
Apicomplexa/genética , Apicoplastos/genética , Genoma , Apicomplexa/clasificación , Núcleo Celular/genética , Redes y Vías Metabólicas/genética , Filogenia
14.
Ecology ; 100(3): e02594, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30615200

RESUMEN

Kelp systems dominate nearshore marine environments in upwelling zones characterized by cold temperatures and high nutrients. Worldwide, kelp population persistence and recruitment success generally decreases with rising water temperatures coupled with low nutrients, making kelp populations vulnerable to impending warming of the oceans. This response to climate change at a global scale, however, may vary due to regional differences in temperature variability, acclimation, and differential responses of kelp species to changing conditions. Culture experiments were conducted on 12 eastern Pacific kelp taxa across geographic regions (British Columbia, central California, and southern California) under three nitrate levels (1, 5, and 10 µmol/L) and two temperatures (12°C and 18°C) to determine sporophyte production (i.e., recruitment success). For all taxa from all locations, sporophytes were always present in the 12°C treatment and when recruitment failure was observed, it always occurred at 18°C, regardless of nitrate level, indicating that temperature is the driving factor limiting recruitment, not nitrate. Rising ocean temperatures will undoubtedly cause recruitment failure for many kelp species; however, the ability of species to acclimatize or adapt to increased temperatures at the warmer edge of their species range may promote a resiliency of kelp systems to climate change at a global scale.


Asunto(s)
Kelp , Colombia Británica , California , Cambio Climático , Océanos y Mares , Temperatura
15.
J Eukaryot Microbiol ; 66(1): 4-119, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30257078

RESUMEN

This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.


Asunto(s)
Biodiversidad , Eucariontes/clasificación , Filogenia , Terminología como Asunto
16.
Genome Biol Evol ; 11(1): 41-53, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500900

RESUMEN

The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.


Asunto(s)
Apicomplexa/genética , Peroxisomas/genética , Purinas/metabolismo , Apicomplexa/metabolismo , Ácido Úrico/metabolismo
17.
J Phycol ; 55(2): 279-288, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30537065

RESUMEN

Parasitism is a life strategy that has repeatedly evolved within the Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used to distinguish parasites based on the relative phylogenetic relationship of host and parasite. However, analyses using molecular phylogenetics indicate that nearly all red algal parasites infect within their taxonomic family, and a range of relationships exist between host and parasite. To date, all investigated adelphoparasites have lost their plastid, and instead, incorporate a host-derived plastid when packaging spores. In contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a partial plastid genome from Leachiella pacifica. The H. mirabilis plastid shares more synteny with free-living red algal plastids than that of C. polysiphoniae. Phylogenetic analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly supported clade of parasites, which retain their own plastid genomes, within the Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites (formerly adelphoparasites) to distinguish red algal parasites using a biological framework rather than taxonomic affiliation with their hosts.


Asunto(s)
Parásitos , Rhodophyta , Animales , Evolución Molecular , Filogenia , Plastidios
18.
Bioessays ; 40(4): e1700198, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29512175

RESUMEN

Despite their diversity and ecological importance, many areas of the SAR-Stramenopila, Alveolata, and Rhizaria-clade are poorly understood as the majority (90%) of SAR species lack molecular data and only 5% of species are from well-sampled families. Here, we review and summarize the state of knowledge about the three major clades of SAR, describing the diversity within each clade and identifying synapomorphies when possible. We also assess the "dark area" of SAR: the morphologically described species that are missing molecular data. The majority of molecular data for SAR lineages are characterized from marine samples and vertebrate hosts, highlighting the need for additional research effort in areas such as freshwater and terrestrial habitats and "non-vertebrate" hosts. We also describe the paucity of data on the biogeography of SAR species, and point to opportunities to illuminate diversity in this major eukaryotic clade. See also the video abstract here: https://youtu.be/_VUXqaX19Rw.


Asunto(s)
Alveolados/fisiología , Oscuridad , Rhizaria/fisiología , Estramenopilos/fisiología , Ecología , Ecosistema , Eucariontes/fisiología , Filogenia , Análisis de Secuencia de ADN
19.
Mol Biochem Parasitol ; 214: 105-111, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28427949

RESUMEN

Parasitic red algae evolve from a common ancestor with their hosts, parasitizing cousins using familiar cellular mechanisms. They have independently evolved over one hundred times within the exclusively multicellular red algal class Florideophyceae. Reduced morphology, a lack of pigmentation, and direct cell-cell connections with their hosts are markers of red algal parasitism. With so many potential evolutionary pathways, red algal parasite diversity offers a unique test case to understand the earliest stages of this lifestyle transition. Molecular and morphological investigations led to the categorization of these parasites based on their relationship to their host. "Adelphoparasites" are phylogenetically close to their hosts, often infecting a sister species, whereas "alloparasites" are more distantly related to their hosts. The differentiation of these parasites, based on their phylogenetic relationship to their host, has resulted in a simplified classification of these parasites that may not reflect the many evolutionary pathways they take to arrive at a similar endpoint. Accordingly, many parasites fall into a gray area between adelphoparasite and alloparasite definitions, challenging the established features we use to classify them. Molecular phylogenetic research has been essential in identifying gaps in knowledge, but microscopy needs to be reincorporated in order to address red algal parasite developmental variation to establish a new paradigm. The joint utilization of molecular and microscopic methods will be critical in identifying the genomic and physiological traits of both nascent and well-established parasites.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Parásitos , Rhodophyta/genética , Rhodophyta/fisiología , Microscopía , Filogenia , Rhodophyta/clasificación , Rhodophyta/citología
20.
Genome Biol Evol ; 9(1): 48-63, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28175279

RESUMEN

The enslavement of an alpha-proteobacterial endosymbiont by the last common eukaryotic ancestor resulted in large-scale gene transfer of endosymbiont genes to the host nucleus as the endosymbiont transitioned into the mitochondrion. Mitochondrial genomes have experienced widespread gene loss and genome reduction within eukaryotes and DNA sequencing has revealed that most of these gene losses occurred early in eukaryotic lineage diversification. On a broad scale, more recent modifications to organelle genomes appear to be conserved and phylogenetically informative. The first red algal mitochondrial genome was sequenced more than 20 years ago, and an additional 29 Florideophyceae mitochondria have been added over the past decade. A total of 32 genes have been described to have been missing or considered non-functional pseudogenes from these Florideophyceae mitochondria. These losses have been attributed to endosymbiotic gene transfer or the evolution of a parasitic life strategy. Here we sequenced the mitochondrial genomes from the red algal parasite Choreocolax polysiphoniae and its host Vertebrata lanosa and found them to be complete and conserved in structure with other Florideophyceae mitochondria. This result led us to resequence the previously published parasite Gracilariophila oryzoides and its host Gracilariopsis andersonii, as well as reevaluate reported gene losses from published Florideophyceae mitochondria. Multiple independent losses of rpl20 and a single loss of rps11 can be verified. However by reannotating published data and resequencing specimens when possible, we were able to identify the majority of genes that have been reported as lost or pseudogenes from Florideophyceae mitochondria.


Asunto(s)
Genoma Mitocondrial , Rhodophyta/clasificación , Rhodophyta/genética , Evolución Molecular , Genes Mitocondriales , Anotación de Secuencia Molecular , Rhodophyta/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA