Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682269

RESUMEN

The subcellular distribution of the polarity protein Yurt (Yrt) is subjected to a spatio-temporal regulation in Drosophila melanogaster embryonic epithelia. After cellularization, Yrt binds to the lateral membrane of ectodermal cells and maintains this localization throughout embryogenesis. During terminal differentiation of the epidermis, Yrt accumulates at septate junctions and is also recruited to the apical domain. Although the mechanisms through which Yrt associates with septate junctions and the apical domain have been deciphered, how Yrt binds to the lateral membrane remains as an outstanding puzzle. Here, we show that the FERM domain of Yrt is necessary and sufficient for membrane localization. Our data also establish that the FERM domain of Yrt directly binds negatively charged phospholipids. Moreover, we demonstrate that positively charged amino acid motifs embedded within the FERM domain mediates Yrt membrane association. Finally, we provide evidence suggesting that Yrt membrane association is functionally important. Overall, our study highlights the molecular basis of how Yrt associates with the lateral membrane during the developmental time window where it is required for segregation of lateral and apical domains.


Asunto(s)
Membrana Celular , Polaridad Celular , Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Dominios Proteicos , Interacciones Hidrofóbicas e Hidrofílicas , Secuencias de Aminoácidos , Unión Proteica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Fosfolípidos/metabolismo
2.
Cell Rep ; 40(1): 111031, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793621

RESUMEN

EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.


Asunto(s)
Receptores de la Familia Eph , Transducción de Señal , Proteína Tirosina Quinasa CSK , Comunicación Celular , Programas Informáticos
3.
Elife ; 102021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34212861

RESUMEN

The Drosophila polarity protein Crumbs is essential for the establishment and growth of the apical domain in epithelial cells. The protein Yurt limits the ability of Crumbs to promote apical membrane growth, thereby defining proper apical/lateral membrane ratio that is crucial for forming and maintaining complex epithelial structures such as tubes or acini. Here, we show that Yurt also increases Myosin-dependent cortical tension downstream of Crumbs. Yurt overexpression thus induces apical constriction in epithelial cells. The kinase aPKC phosphorylates Yurt, thereby dislodging the latter from the apical domain and releasing apical tension. In contrast, the kinase Pak1 promotes Yurt dephosphorylation through activation of the phosphatase PP2A. The Pak1-PP2A module thus opposes aPKC function and supports Yurt-induced apical constriction. Hence, the complex interplay between Yurt, aPKC, Pak1, and PP2A contributes to the functional plasticity of Crumbs. Overall, our data increase our understanding of how proteins sustaining epithelial cell polarization and Myosin-dependent cell contractility interact with one another to control epithelial tissue architecture.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteína Quinasa C/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Membrana Celular/fisiología , Citoesqueleto/fisiología , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Células Epiteliales/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Miosinas/genética , Miosinas/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteína Quinasa C/genética , Quinasas p21 Activadas/genética
4.
J Cell Biol ; 219(4)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32328642

RESUMEN

The tumor cell-selective killing activity of the adenovirus type 2 early region 4 ORF4 (E4orf4) protein is poorly defined at the molecular level. Here, we show that the tumoricidal effect of E4orf4 is typified by changes in nuclear dynamics that depend on its interaction with the polarity protein Par3 and actomyosin contractility. Mechanistically, E4orf4 induced a high incidence of nuclear bleb formation and repetitive nuclear ruptures, which promoted nuclear efflux of E4orf4 and loss of nuclear integrity. This process was regulated by nucleocytoskeletal connections, Par3 clustering proximal to nuclear lamina folds, and retrograde movement of actin bundles that correlated with nuclear ruptures. Significantly, Par3 also regulated the incidence of spontaneous nuclear ruptures facilitated by the downmodulation of lamins. This work uncovered a novel role for Par3 in controlling the actin-dependent forces acting on the nuclear envelope to remodel nuclear shape, which might be a defining feature of tumor cells that is harnessed by E4orf4.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Virales/metabolismo , Muerte Celular , Células HEK293 , Células HeLa , Humanos
5.
PLoS Genet ; 16(3): e1008674, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196494

RESUMEN

Epithelial cell polarity defects support cancer progression. It is thus crucial to decipher the functional interactions within the polarity protein network. Here we show that Drosophila Girdin and its human ortholog (GIRDIN) sustain the function of crucial lateral polarity proteins by inhibiting the apical kinase aPKC. Loss of GIRDIN expression is also associated with overgrowth of disorganized cell cysts. Moreover, we observed cell dissemination from GIRDIN knockdown cysts and tumorspheres, thereby showing that GIRDIN supports the cohesion of multicellular epithelial structures. Consistent with these observations, alteration of GIRDIN expression is associated with poor overall survival in subtypes of breast and lung cancers. Overall, we discovered a core mechanism contributing to epithelial cell polarization from flies to humans. Our data also indicate that GIRDIN has the potential to impair the progression of epithelial cancers by preserving cell polarity and restricting cell dissemination.


Asunto(s)
Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células CACO-2 , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Proliferación Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Morfogénesis/fisiología , Mapas de Interacción de Proteínas , Proteína Quinasa C/metabolismo , Proteínas de Transporte Vesicular/genética
6.
Nucleic Acids Res ; 47(14): 7532-7547, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31219578

RESUMEN

Fanconi Anemia (FA) clinical phenotypes are heterogenous and rely on a mutation in one of the 22 FANC genes (FANCA-W) involved in a common interstrand DNA crosslink-repair pathway. A critical step in the activation of FA pathway is the monoubiquitination of FANCD2 and its binding partner FANCI. To better address the clinical phenotype associated with FANCI and the epistatic relationship with FANCD2, we created the first conditional inactivation model for FANCI in mouse. Fanci -/- mice displayed typical FA features such as delayed development in utero, microphtalmia, cellular sensitivity to mitomycin C, occasional limb abnormalities and hematological deficiencies. Interestingly, the deletion of Fanci leads to a strong meiotic phenotype and severe hypogonadism. FANCI was localized in spermatocytes and spermatids and in the nucleus of oocytes. Both FANCI and FANCD2 proteins co-localized with RPA along meiotic chromosomes, albeit at different levels. Consistent with a role in meiotic recombination, FANCI interacted with RAD51 and stimulated D-loop formation, unlike FANCD2. The double knockout Fanci-/- Fancd2-/- also showed epistatic relationship for hematological defects while being not epistatic with respect to generating viable mice in crosses of double heterozygotes. Collectively, this study highlights common and distinct functions of FANCI and FANCD2 during mouse development, meiotic recombination and hematopoiesis.


Asunto(s)
Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Espermatocitos/metabolismo
7.
J Cell Biol ; 217(11): 3853-3862, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30082297

RESUMEN

Drosophila melanogaster Yurt (Yrt) and its mammalian orthologue EPB41L5 limit apical membrane growth in polarized epithelia. EPB41L5 also supports epithelial-mesenchymal transition and metastasis. Yrt and EPB41L5 contain a four-point-one, ezrin, radixin, and moesin (FERM) domain and a FERM-adjacent (FA) domain. The former contributes to the quaternary structure of 50 human proteins, whereas the latter defines a subfamily of 14 human FERM proteins and fulfills unknown roles. In this study, we show that both Yrt and EPB41L5 oligomerize. Our data also establish that the FERM-FA unit forms an oligomeric interface and that multimerization of Yrt is crucial for its function in epithelial cell polarity regulation. Finally, we demonstrate that aPKC destabilizes the Yrt oligomer to repress its functions, thereby revealing a mechanism through which this kinase supports apical domain formation. Overall, our study highlights a conserved biochemical property of fly and human Yrt proteins, describes a novel function of the FA domain, and further characterizes the molecular mechanisms sustaining epithelial cell polarity.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Multimerización de Proteína , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliales/química , Células Epiteliales/citología , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Dominios Proteicos
8.
Mol Cell ; 70(6): 995-1007.e11, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29910111

RESUMEN

Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/fisiología , Receptor EphA4/metabolismo , Dominios Homologos src/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Comunicación Celular , Drosophila/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligandos , Proteínas Oncogénicas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Tirosina/metabolismo
9.
Biol Open ; 5(1): 49-54, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26700724

RESUMEN

The morphometric parameters of epithelial tubes are critical to the physiology and homeostasis of most organs. In addition, many human diseases are associated with tube-size defects. Here, we show that Rac1 limits epithelial tube elongation in the developing fly trachea by promoting Rab5-dependent endocytosis of the apical determinant Crumbs. Rac1 is also involved in a positive feedback loop with the septate junction protein Coracle. Thereby, Rac1 precludes paracellular diffusion and contributes to the septate junction-dependent secretion of the chitin-modifying enzymes Vermiform and Serpentine, which restrict epithelial tube length independently of Crumbs. Thus, Rac1 is a critical component of two important pathways controlling epithelial tube morphogenesis.

10.
Sci Rep ; 5: 17699, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26631503

RESUMEN

The human apical protein CRB3 (Crb3 in mouse) organizes epithelial cell polarity. Loss of CRB3 expression increases the tumorogenic potential of cultured epithelial cells and favors metastasis formation in nude mice. These data emphasize the need of in vivo models to study CRB3 functions. Here, we report the phenotypic analysis of a novel Crb3 knockout mouse model. Crb3-deficient newborn mice show improper clearance of airways, suffer from respiratory distress and display perinatal lethality. Crb3 is also essential to maintain apical membrane identity in kidney epithelial cells. Numerous kidney cysts accompany these polarity defects. Impaired differentiation of the apical membrane is also observed in a subset of cells of the intestinal epithelium. This results in improper remodeling of adhesive contacts in the developing intestinal epithelium, thereby leading to villus fusion. We also noted a strong increase in cytoplasmic ß-catenin levels in intestinal epithelial cells. ß-catenin is a mediator of the Wnt signaling pathway, which is overactivated in the majority of colon cancers. In addition to clarifying the physiologic roles of Crb3, our study highlights that further functional analysis of this protein is likely to provide insights into the etiology of diverse pathologies, including respiratory distress syndrome, polycystic kidney disease and cancer.


Asunto(s)
Epitelio/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Animales Recién Nacidos , Células Epiteliales/fisiología , Epitelio/fisiopatología , Intestinos/fisiopatología , Riñón/fisiopatología , Pulmón/fisiopatología , Glicoproteínas de Membrana , Proteínas de la Membrana/genética , Ratones Noqueados , Ratones Transgénicos , Uniones Estrechas/metabolismo , beta Catenina/metabolismo
11.
Mol Cell Biol ; 35(19): 3423-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26217016

RESUMEN

The transmembrane protein CRB3A controls epithelial cell polarization. Elucidating the molecular mechanisms of CRB3A function is essential as this protein prevents the epithelial-to-mesenchymal transition (EMT), which contributes to tumor progression. To investigate the functional impact of altered CRB3A expression in cancer cells, we expressed CRB3A in HeLa cells, which are devoid of endogenous CRB3A. While control HeLa cells display a patchy F-actin distribution, CRB3A-expressing cells form a circumferential actomyosin belt. This reorganization of the cytoskeleton is accompanied by a transition from an ameboid cell shape to an epithelial-cell-like morphology. In addition, CRB3A increases the cohesion of HeLa cells. To perform these functions, CRB3A recruits p114RhoGEF and its activator Ehm2 to the cell periphery using both functional motifs of its cytoplasmic tail and increases RhoA activation levels. ROCK1 and ROCK2 (ROCK1/2), which are critical effectors of RhoA, are also essential to modulate the cytoskeleton and cell shape downstream of CRB3A. Overall, our study highlights novel roles for CRB3A and deciphers the signaling pathway conferring to CRB3A the ability to fulfill these functions. Thereby, our data will facilitate further investigation of CRB3A functions and increase our understanding of the cellular defects associated with the loss of CRB3A expression in cancer cells.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Glicoproteínas de Membrana/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células CACO-2 , Adhesión Celular , Forma de la Célula , Perros , Células HEK293 , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Miosina Tipo II/metabolismo , Transporte de Proteínas , Transducción de Señal
12.
Development ; 142(10): 1777-84, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25968313

RESUMEN

E-cadherin-mediated cell-cell adhesion is fundamental for epithelial tissue morphogenesis, physiology and repair. E-cadherin is a core transmembrane constituent of the zonula adherens (ZA), a belt-like adherens junction located at the apicolateral border in epithelial cells. The anchorage of ZA components to cortical actin filaments strengthens cell-cell cohesion and allows for junction contractility, which shapes epithelial tissues during development. Here, we report that the cytoskeletal adaptor protein Girdin physically and functionally interacts with components of the cadherin-catenin complex during Drosophila embryogenesis. Fly Girdin is broadly expressed throughout embryonic development and enriched at the ZA in epithelial tissues. Girdin associates with the cytoskeleton and co-precipitates with the cadherin-catenin complex protein α-Catenin (α-Cat). Girdin mutations strongly enhance adhesion defects associated with reduced DE-cadherin (DE-Cad) expression. Moreover, the fraction of DE-Cad molecules associated with the cytoskeleton decreases in the absence of Girdin, thereby identifying Girdin as a positive regulator of adherens junction function. Girdin mutant embryos display isolated epithelial cell cysts and rupture of the ventral midline, consistent with defects in cell-cell cohesion. In addition, loss of Girdin impairs the collective migration of epithelial cells, resulting in dorsal closure defects. We propose that Girdin stabilizes epithelial cell adhesion and promotes morphogenesis by regulating the linkage of the cadherin-catenin complex to the cytoskeleton.


Asunto(s)
Cadherinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Morfogénesis/fisiología
13.
J Cell Biol ; 204(4): 487-95, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24515345

RESUMEN

During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/antagonistas & inhibidores , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Células Epiteliales/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Western Blotting , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Células Epiteliales/citología , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Homología de Secuencia de Aminoácido
14.
PLoS One ; 8(2): e55342, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408971

RESUMEN

The RNA-binding protein Fragile X Mental Retardation (FMRP) is an evolutionarily conserved protein that is particularly abundant in the brain due to its high expression in neurons. FMRP deficiency causes fragile X mental retardation syndrome. In neurons, FMRP controls the translation of target mRNAs in part by promoting dynamic transport in and out neuronal RNA granules. We and others have previously shown that upon stress, mammalian FMRP dissociates from translating polysomes to localize into neuronal-like granules termed stress granules (SG). This localization of FMRP in SG is conserved in Drosophila. Whether FMRP plays a key role in SG formation, how FMRP is recruited into SG, and whether its association with SG is dynamic are currently unknown. In contrast with mammalian FMRP, which has two paralog proteins, Drosophila FMR1 (dFMRP) is encoded by a single gene that has no paralog. Using this genetically simple model, we assessed the role of dFMRP in SG formation and defined the determinants required for its recruitment in SG as well as its dynamics in SG. We show that dFMRP is dispensable for SG formation in vitro and ex vivo. FRAP experiments showed that dFMRP shuttles in and out SG. The shuttling activity of dFMRP is mediated by a protein-protein interaction domain located at the N-terminus of the protein. This domain is, however, dispensable for the localization of dFMRP in SG. This localization of dFMRP in SG requires the KH and RGG motifs which are known to mediate RNA binding, as well as the C-terminal glutamine/asparagine rich domain. Our studies thus suggest that the mechanisms controlling the recruitment of FMRP into SG and those that promote its shuttling between granules and the cytosol are uncoupled. To our knowledge, this is the first demonstration of the regulated shuttling activity of a SG component between RNA granules and the cytosol.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Animales
15.
J Cell Biol ; 198(6): 991-8, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22965909

RESUMEN

Drosophila melanogaster Crumbs (Crb) and its mammalian orthologues (CRB1-3) share evolutionarily conserved but poorly defined roles in regulating epithelial polarity and, in photoreceptor cells, morphogenesis and stability. Elucidating the molecular mechanisms of Crb function is vital, as mutations in the human CRB1 gene cause retinal dystrophies. Here, we report that Crb restricts Rac1-NADPH oxidase-dependent superoxide production in epithelia and photoreceptor cells. Reduction of superoxide levels rescued epithelial defects in crb mutant embryos, demonstrating that limitation of superoxide production is a crucial function of Crb and that NADPH oxidase and superoxide contribute to the molecular network regulating epithelial tissue organization. We further show that reduction of Rac1 or NADPH oxidase activity or quenching of reactive oxygen species prevented degeneration of Crb-deficient retinas. Thus, Crb fulfills a protective role during light exposure by limiting oxidative damage resulting from Rac1-NADPH oxidase complex activity. Collectively, our results elucidate an important mechanism by which Crb functions in epithelial organization and the prevention of retinal degeneration.


Asunto(s)
Muerte Celular/fisiología , Proteínas de Drosophila/metabolismo , Epitelio/metabolismo , Proteínas de la Membrana/metabolismo , Oxidorreductasas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Muerte Celular/genética , Polaridad Celular/genética , Polaridad Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Luz , Proteínas de la Membrana/genética , Mutación/genética , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas/genética , Especies Reactivas de Oxígeno/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Superóxidos/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
16.
J Cell Sci ; 124(Pt 20): 3393-8, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21984807

RESUMEN

Drosophila Crumbs (Crb) and its mammalian ortholog CRB3 control epithelial polarity through poorly understood molecular mechanisms. Elucidating these mechanisms is crucial, because the physiology of epithelia largely depends on the polarized architecture of individual epithelial cells. In addition, loss of CRB3 favors tumor cell growth, metastasis and epithelial to mesenchymal transition (EMT). Using Drosophila embryos, we report that Rac1 sustains PI3K signaling, which is required for Rac1 activation. Crb represses this positive-feedback loop. Notably, this property confers to Crb its ability to promote epithelial integrity in vivo, because attenuation of either Rac1 or PI3K activity rescues the crb mutant phenotype. Moreover, inhibition of Rac1 or PI3K results in Crb-dependent apical membrane growth, whereas Rac1 activation restricts membrane localization of Crb and interferes with apical domain formation. This illustrates that Crb and the Rac1-PI3K module are antagonists, and that the fine balance between the activities of these proteins is crucial to maintain epithelial organization and an appropriate apical to basolateral ratio. Together, our results elucidate a mechanism that mediates Crb function and further define the role of PI3K and Rac1 in epithelial morphogenesis, allowing for a better understanding of how distinct membrane domains are regulated in polarized epithelial cells.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Epitelio/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Polaridad Celular/genética , Extensiones de la Superficie Celular/genética , Células Cultivadas , Drosophila/fisiología , Proteínas de Drosophila/genética , Embrión no Mamífero , Transición Epitelial-Mesenquimal/genética , Epitelio/patología , Retroalimentación Fisiológica , Proteínas de la Membrana/genética , Morfogénesis/genética , Mutación/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/genética
17.
J Biomed Biotechnol ; 2011: 868217, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21912482

RESUMEN

Defects in apical-basal polarity regulation are associated with tissue overgrowth and tumorogenesis, yet the molecular mechanisms linking epithelial polarity regulators to hyperplasia or neoplasia remain elusive. In addition, exploration of the expression and function of the full complement of proteins required for the polarized architecture of epithelial cells in the context of cancer is awaited. This paper provides an overview of recent studies performed on Drosophila and vertebrates showing that apical polarity proteins of the Crumbs family act to repress tissue growth and epithelial to mesenchymal transition. Thus, these proteins emerge as potential tumor suppressors. Interestingly, analysis of the molecular function of Crumbs proteins reveals a function for these polarity regulators in junctional complexes stability and control of signaling pathways regulating proliferation and apoptosis. Thereby, these studies provide a molecular basis explaining how regulation of epithelial polarity is coupled to tumorogenesis.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Drosophila/fisiología , Células Epiteliales/fisiología , Proteínas del Ojo/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Humanos
18.
Trends Cell Biol ; 21(7): 401-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21530265

RESUMEN

Apical-basal polarity is a basic organizing principle of epithelial cells. Consequently, defects in polarity are associated with numerous human pathologies, including many forms of cancer. Recent work in Drosophila has identified novel roles for, or has greatly enhanced our understanding of, functional modules within the epithelial polarity network. A series of recent papers have highlighted the key function of the scaffolding protein Bazooka/Par3 as an early polarity landmark, and its crucial role in dynamic segregation of the apical membrane from the adherens junction. Moreover, novel polarity modules have recently been discovered; the Yurt/Coracle group supports the basolateral membrane during a defined time window of development, while a second module, including the kinases LKB1 and AMP-activated protein kinase, is required for polarity when epithelial cells experience metabolic stress. These new findings emphasize unforeseen complexities in the regulation of epithelial polarity, and raise new questions about the mechanisms of epithelial tissue organization and function.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Animales , Células Epiteliales/citología
20.
Curr Biol ; 20(1): 55-61, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20022244

RESUMEN

Regulation of epithelial tube size is critical for organ function. However, the mechanisms of tube size control remain poorly understood. In the Drosophila trachea, tube dimensions are regulated by a luminal extracellular matrix (ECM). ECM organization requires apical (luminal) secretion of the protein Vermiform (Verm), which depends on the basolateral septate junction (SJ). Here, we show that apical and basolateral epithelial polarity proteins interact to control tracheal tube size independently of the Verm pathway. Mutations in yurt (yrt) and scribble (scrib), which encode SJ-associated polarity proteins, cause an expansion of tracheal tubes but do not disrupt Verm secretion. Reducing activity of the apical polarity protein Crumbs (Crb) suppresses the length defects in yrt but not scrib mutants, suggesting that Yrt acts by negatively regulating Crb. Conversely, Crb overexpression increases tracheal tube dimensions. Reducing crb dosage also rescues tracheal size defects caused by mutations in coracle (cora), which encodes an SJ-associated polarity protein. In addition, crb mutations suppress cora length defects without restoring Verm secretion. Together, these data indicate that Yrt, Cora, Crb, and Scrib operate independently of the Verm pathway. Our data support a model in which Cora and Yrt act through Crb to regulate epithelial tube size.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/embriología , Drosophila/fisiología , Tráquea/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Drosophila/genética , Proteínas de Drosophila/genética , Matriz Extracelular/fisiología , Genes de Insecto , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Modelos Biológicos , Mutación , Tamaño de los Órganos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA