Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Control Release ; 322: 53-63, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32145268

RESUMEN

Albumin accumulation in tumours could reflect a role of albumin in transport of endogenous nutrient cargos required for cellular growth and not just a suggested source of amino acids; a role driven by albumin engagement with its cognate cellular recycling neonatal Fc receptor. We investigate the hypothesis that albumin cellular recruitment is increased by higher human FcRn (hFcRn) expression in human cancer tissue that provides the mechanistic basis for exploitation in albumin-based drug designs engineered to optimise this process. Eight out of ten different human cancer tissue types screened for hFcRn expression by immunohistochemistry (310 samples) exhibited significantly higher hFcRn expression compared to healthy tissues. Accelerated tumour growth over 28 days in mice inoculated with hFcRn-expressing HT-29 human colorectal cancer cell xenografts, compared to CRISPR/Cas9 hFcRn-knockout HT-29, suggests a hFcRn-mediated tumour growth effect. Direct correlation between hFcRn expression and albumin recycling supports hFcRn-mediated diversion of albumin from lysosomal degradation. Two-fold increase in accumulation of fluorescent labelled high-binding hFcRn albumin, compared to wild type albumin, in luciferase MDA-MB-231-Luc-D3H2LN breast cancer xenografts was shown. This work identifies overexpression of hFcRn in several human cancer types with mechanistic data suggesting hFcRn-driven albumin recruitment for increased cellular growth that has the potential to be exploited with high hFcRn-binding albumin variants for targeted therapies.


Asunto(s)
Diseño de Fármacos , Neoplasias , Animales , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Receptores Fc/genética , Albúmina Sérica Humana
2.
J Control Release ; 287: 132-141, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30016735

RESUMEN

Recombinant albumin-drug genetic fusions are an effective technology to prolong the serum half-life of therapeutics that has resulted in marketed products. Indirect evidence suggests albumin fusions' long circulation is controlled by engagement with the cellular recycling neonatal Fc receptor (FcRn) in addition to reduced kidney filtration. In this work, we have used a panel of recombinant fusions, engineered with different human FcRn (hFcRn) affinity, including a novel high binding albumin variant (HBII), to directly define and importantly, control the intracellular mechanism as a half-life extension tuning method. mNeonGreen or mCherry fusion to the N-terminal of the recombinant human albumin (rHA) variants null-binder (rHA NB), wild-type (rHA WT), high-binder I (rHA HBI), and high-binder II (rHA HBII) did not generally interfere with hFcRn interaction determined by Biolayer Interferometry. Co-localisation of the albumins with endosomal, but not lysosomal, markers was shown by confocal microscopy for high, but not low, hFcRn binders in a human microvascular endothelial hFcRn overexpressing cell line (HMEC-1 FcRn) suggestive of endosomal compartmentalisation. Furthermore, a cellular recycling assay revealed increased recycling of albumin fusions for the high binding variants (mNeonGreen WT; ~1, mNeonGreen HBI; 5.26-fold higher, and mNeonGreen HBII; 5.77-fold higher) in the hFcRn overexpressing cell line. In vivo experiments demonstrated a direct in vitro recycling/in vivo half-life correlation with a longer circulation for the mCherry fusions engineered with high hFcRn affinity that was highest with the HBII variant of 30.1 h compared to 18.2 h for the mCherry WT. This work gives the first direct evidence for an FcRn-driven endosomal cellular recycling pathway for recombinant albumin fusions that correlates with half-life extension controlled by the affinity to hFcRn; promoting a versatile method to tune the pharmacokinetics of albumin fusion-based therapeutics not met by current technologies.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas Luminiscentes/farmacocinética , Receptores Fc/metabolismo , Albúmina Sérica Humana/farmacocinética , Animales , Línea Celular , Semivida , Humanos , Proteínas Luminiscentes/metabolismo , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacocinética , Albúmina Sérica Humana/metabolismo , Proteína Fluorescente Roja
3.
Mol Cell Ther ; 4: 3, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925240

RESUMEN

The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.

4.
Bioorg Med Chem Lett ; 23(5): 1220-4, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23385211

RESUMEN

We here report the synthesis of ethylene glycol N-interlinked imipramine dimers of various lengths from the tricyclic antidepressant desipramine via an amide coupling reaction followed by reduction with lithium aluminium hydride. The target molecules were found to be potent inhibitors of cellular viability while inducing cell type specific death mechanisms in three cancer cell lines including a highly chemoresistant Burkitt's lymphoma cell line. Basic amine analogues were found to be important for increased potency. Imipramine and desipramine were also tested for apoptotic activity and were found to be much less active than the novel dimeric compounds. Imipramine dimers were only found to be moderate inhibitors of the human serotonin transporter (hSERT) having IC(50) values in the micromolar region whilst the induction of cell death occurred independently of hSERT expression. These results demonstrate the potential of newly designed and synthesised imipramines derivatives for use against malignant cells, including those resistant to standard chemotherapy.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Linfoma de Burkitt/tratamiento farmacológico , Imipramina/análogos & derivados , Imipramina/farmacología , Apoptosis/efectos de los fármacos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Imipramina/síntesis química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA