Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(18): e38016, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39381224

RESUMEN

Background: Dupuytren's disease (DD) is a fibro-proliferative disorder of unknown aetiology. Previous studies have implicated multiple WNT signalling genes/proteins in Dupuytren pathology, including WNT4. However, it is not yet clear whether WNT signalling dysregulation plays an important role in the initiation of the disease or progression. The aim of this study was to determine if loss of WNT4 expression triggered 'Dupuytren-like' changes in the transcriptome of healthy skin fibroblasts. Methods: Fibroblasts were isolated from the wrists of healthy adult males and from the wrists and disease cord tissue from males in a family positive for Dupuytren's disease. Normal skin fibroblasts from healthy controls were treated with WNT4 siRNA and scrambled controls. RNASeq was used to analyse the transcriptomes of disease and non-disease fibroblasts from patients with Dupuytren's as well as in siRNA treated and non-treated control fibroblasts. Results: Analysis of the transcriptomes from DD patient and normal skin fibroblasts showed significant differences, including in WNT4 expression. Downregulation of WNT4 in normal skin fibroblasts using siRNA led to 'DD-like' changes in the transcriptome. Conclusion: In people susceptible to DD WNT4 is downregulated even in non-fibrotic fibroblasts. Knockdown of WNT4 in normal fibroblasts led to changes that made cells 'DD-like'. This study shows that WNT4 is down regulated in 'non-disease' cells, and that downregulating WNT4 in normal skin fibroblasts leads to widespread 'DD like' changes in the transcriptome, suggesting WNT4 downregulation is a key driver of DD.

2.
Adv Healthc Mater ; : e2400364, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221662

RESUMEN

Central nervous system (CNS) injuries and neurodegenerative diseases have markedly poor prognoses and can result in permanent dysfunction due to the general inability of CNS neurons to regenerate. Differentiation of transplanted stem cells has emerged as a therapeutic avenue to regenerate tissue architecture in damaged areas. Electrical stimulation is a promising approach for directing the differentiation outcomes and pattern of outgrowth of transplanted stem cells, however traditional inorganic bio-electrodes can induce adverse effects such as inflammation. This study demonstrates the implementation of two organic thin films, a polymer/reduced graphene oxide nanocomposite (P(rGO)) and PEDOT:PSS, that have favorable properties for implementation as conductive materials for electrical stimulation, as well as an inorganic indium tin oxide (ITO) conductive film. Transcriptomic analysis reveals that electrical stimulation improves neuronal differentiation of SH-SY5Y cells on all three films, with the greatest effect for P(rGO). Unique material- and electrical stimuli-mediated effects are observed, associated with differentiation, cell-substrate adhesion, and translation. The work demonstrates that P(rGO) and PEDOT:PSS are highly promising organic materials for the development of biocompatible, conductive scaffolds that will enhance electrically-aided stem cell therapeutics for CNS injuries and neurodegenerative diseases.

3.
Chem Sci ; 14(28): 7681-7687, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37476710

RESUMEN

DNA G-quadruplexes (G4s) have been identified as important biological targets for transcriptional, translational, and epigenetic regulation. The stabilisation of G4s with small molecule ligands has emerged as a technique to regulate gene expression and as a potential therapeutic approach for human diseases. Here, we demonstrate that ligand stabilisation of G4s causes altered chromatin accessibility dependent on the targeting specificity of the molecule. In particular, stabilisation of a target G4 using the highly specific GTC365 ligand resulted in differential accessibility of 61 genomic regions, while the broad-targeting G4 ligand, GQC-05, stabilised many G4s and induced a global shift towards increased accessibility of gene promoter regions. Interestingly, while we observed distinct effects of each ligand on RNA expression levels and the induction of DNA double-stranded breaks, both ligands modified DNA damage response pathways. Our work represents the dual possibility of G4-stabilising ligands for specific or global chromatin modulation via unique targeting characteristics.

4.
Biomed Opt Express ; 13(5): 3131-3144, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35774325

RESUMEN

As millimetre wave (MMW) frequencies of the electromagnetic spectrum are increasingly adopted in modern technologies such as mobile communications and networking, characterising the biological effects is critical in determining safe exposure levels. We study the exposure of primary human dermal fibroblasts to MMWs, finding MMWs trigger genomic and transcriptomic alterations. In particular, repeated 60 GHz, 2.6 mW cm-2, 46.8 J cm-2 d-1 MMW doses induce a unique physiological response after 2 and 4 days exposure. We show that high dose MMWs induce simultaneous non-thermal alterations to the transcriptome and DNA structural dynamics, including formation of G-quadruplex and i-motif secondary structures, but not DNA damage.

5.
Langmuir ; 36(31): 9074-9080, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32672978

RESUMEN

Successful intracellular delivery of therapeutics requires interactions at several liquid-solid interfaces, including cell surface, endosomal membranes, and-depending on the therapeutic-the nuclear membrane. Understanding the dynamics of polymer kinetics at the liquid-solid interface is fundamental for the design of polymers for such biomedical delivery applications. However, the effect of polymer architecture and charge density on polymer kinetics is not readily investigated using routine techniques, and the role of such parameters in the context of gene delivery remains unknown. We adopted a synthetic strategy which enabled the systematic manipulation of charge density, flexibility, and molecular weight using a dendronized linear polymeric architecture. High-speed atomic force microscopy (HS-AFM) was used as a label-free method to directly observe the polymers' dynamic properties, such as velocity, displacement, and diffusion, in physiologically relevant conditions. Importantly, we found that the physical parameters measured by HS-AFM relate to the transfection potential of the individual polymers and may be a valuable tool in screening structural polymer variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA