Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exploration (Beijing) ; 3(3): 20220086, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37933387

RESUMEN

Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano-platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal-doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica-based nanoplatforms.

2.
Sci Rep ; 11(1): 11471, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075146

RESUMEN

The largest megalake in the geological record formed in Eurasia during the late Miocene, when the epicontinental Paratethys Sea became tectonically-trapped and disconnected from the global ocean. The megalake was characterized by several episodes of hydrological instability and partial desiccation, but the chronology, magnitude and impacts of these paleoenvironmental crises are poorly known. Our integrated stratigraphic study shows that the main desiccation episodes occurred between 9.75 and 7.65 million years ago. We identify four major regressions that correlate with aridification events, vegetation changes and faunal turnovers in large parts of Europe. Our paleogeographic reconstructions reveal that the Paratethys was profoundly transformed during regression episodes, losing ~ 1/3 of the water volume and ~ 70% of its surface during the most extreme events. The remaining water was stored in a central salt-lake and peripheral desalinated basins while vast regions (up to 1.75 million km2) became emergent land, suitable for development of forest-steppe landscapes. The partial megalake desiccations match with climate, food-web and landscape changes throughout Eurasia, although the exact triggers and mechanisms remain to be resolved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA