RESUMEN
Watersheds and estuaries are impacted by multiple anthropogenic stressors that affect their biodiversity and functioning. Assessing their ecological quality has consequently remained challenging for scientists and stakeholders. In this paper, we propose a multidisciplinary approach to identify the stressors in seven small French estuaries located in agricultural watersheds. We collected data from landscape (geography, hydrobiology) to estuary (pollutant chemistry) and fish individual scales (environmental signatures, proteomics). This integrative approach focused on the whole hydrosystems, from river basins to estuaries. To characterize each watershed, we attempted to determine the land use considering geographic indicators (agricultural and urbanised surfaces) and landscape patterns (hedges density and riparian vegetation). Juveniles of European flounder (Platichthys flesus) were captured in September, after an average residence of five summer months in the estuary. Analyses of water, sediments and biota allowed to determine the concentrations of dissolved inorganic nitrogen species, pesticides and trace elements in the systems. Environmental signatures were also measured in flounder tissues. These environmental parameters were used to establish a typology of the watersheds. Furthermore, data from proteomics on fish liver were combined with environmental signatures to determine the responses of fish to stressors in their environments. Differential protein abundances highlighted a dysregulation related to the detoxification of xenobiotics (mainly pesticides) in agricultural watersheds, characterized by intensive cereal and vegetable crops and high livestock. Omics also revealed a dysregulation of proteins associated with the response to hypoxia and heat stress in some estuaries. Furthermore, we highlighted a dysregulation of proteins involved in urea cycle, immunity and metabolism of fatty acids in several systems. Finally, the combination of environmental and molecular signatures appears to be a relevant method to identify the major stressors operating within hydrosystems.
RESUMEN
With the growth in maritime traffic comes an increased need for precise modelling, analysis, and visualisation to enhance the monitoring capabilities of maritime authorities. To address this need, a range of sensing technologies have been developed to track vessel movements worldwide. Among these, the Automatic Identification System (AIS) is particularly significant, offering high-frequency transmission of both location and identification data. This makes AIS an invaluable tool in the intricate process of modelling maritime traffic that we use in this study. Our study presents a comprehensive dataset for the Caribbean in 2019, including port calls, quay geometries, vessel trajectories, daily locations, a seven-class vessel classification, port statistics, and United Nations reference data for comparison. Beneficial for geomatics, geography, and economics, the dataset provides a versatile tool for visualising data, assessing maritime impact on coastal areas, and enhancing maritime trade analysis. The methodology extracts 1.5 million port calls from 642 million AIS messages, offering detailed data tables and reusable processes. Its granularity down to the single quay allows for flexible data analysis, facilitating in-depth understanding of port and inter-port maritime activities.
RESUMEN
This study aimed to develop a multidisciplinary approach to assess the ecological status of six moderate-sized French estuaries. For each estuary, we gathered geographical information, hydrobiological data, chemistry of pollutants and fish biology, including integration of proteomics and transcriptomics data. This integrative study covered the entire hydrological system studied, from the watershed to the estuary, and considered all the anthropogenic factors that can impact this environment. To reach this goal, European flounder (Platichthys flesus) were collected from six estuaries in September, which ensures a minimum residence time of five months within an estuary. Geographical metrics are used to characterize land use in each watershed. The concentrations of nitrite, nitrate, organic pollutants, and trace elements were measured in water, sediments and biota. All of these environmental parameters allowed to set up a typology of estuaries. Classical fish biomarkers, coupled with molecular data from transcriptomics and shotgun proteomics, highlighted the flounder's responses to stressors in its environment. We analysed the protein abundances and gene expression levels in the liver of fish from the different estuaries. We showed clear positive deregulation of proteins associated with xenobiotic detoxification in a system characterized by a large population density and industrial activity, as well as in a predominantly agricultural catchment area (mostly cultures of vegetables and pig breeding) mainly impacted by pesticides. Fish from the latter estuary also displayed strong deregulation of the urea cycle, most probably related to high nitrogen load. Proteomic and transcriptomic data also revealed a deregulation of proteins and genes related to the response to hypoxia, and a probable endocrine disruption in some estuaries. Coupling these data allowed the precise identification of the main stressors interacting within each hydrosystem.
Asunto(s)
Lenguado , Contaminantes Químicos del Agua , Animales , Porcinos , Lenguado/fisiología , Monitoreo del Ambiente , Ecosistema , Proteómica , Francia , Peces/metabolismo , Estuarios , Contaminantes Químicos del Agua/análisisRESUMEN
BACKGROUND: In the French West Indies, more than 20 species of cetaceans have been observed over the last decades. The recognition of this hotspot of biodiversity of marine mammals, observed in the French Exclusive Economic Zone of the West Indies, motivated the French government to create in 2010 a marine protected area (MPA) dedicated to the conservation of marine mammals: the Agoa Sanctuary. Threats that cetacean populations face are multiple, but well-documented. Cetacean conservation can only be achieved if relevant and reliable data are available, starting by occurrence data. In the Guadeloupe Archipelago and in addition to some data collected by the Agoa Sanctuary, occurrence data are mainly available through the contribution of citizen science and of local stakeholders (i.e. non-profit organisations (NPO) and whale-watchers). However, no observation network has been coordinated and no standards exist for cetacean presence data collection and management. NEW INFORMATION: In recent years, several whale watchers and NPOs regularly collected cetacean observation data around the Guadeloupe Archipelago. Our objective was to gather datasets from three Guadeloupean whale watchers, two NPOs and the Agoa Sanctuary, that agreed to share their data. These heterogeneous data went through a careful process of curation and standardisation in order to create a new extended database, using a newly-designed metadata set. This aggregated dataset contains a total of 4,704 records of 21 species collected in the Guadeloupe Archipelago from 2000 to 2019. The database was called Kakila ("who is there?" in Guadeloupean Creole). The Kakila database was developed following the FAIR principles with the ultimate objective of ensuring sustainability. All these data were transferred into the PNDB repository (Pöle National de Données de Biodiversité, Biodiversity French Data Hub, https://www.pndb.fr).In the Agoa Sanctuary and surrounding waters, marine mammals have to interact with increasing anthropogenic pressure from growing human activities. In this context, the Kakila database fulfils the need for an organised system to structure marine mammal occurrences collected by multiple local stakeholders with a common objective: contribute to the knowledge and conservation of cetaceans living in the French Antilles waters. Much needed data analysis will enable us to identify high cetacean presence areas, to document the presence of rarer species and to determine areas of possible negative interactions with anthropogenic activities.