Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7239, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174524

RESUMEN

Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.


Asunto(s)
División Celular , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Animales , Femenino , Humanos , Masculino , Ratones , Polaridad Celular , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética
2.
Front Cardiovasc Med ; 11: 1424551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036505

RESUMEN

Background: The alpha-protein kinase 3 (ALPK3) gene (OMIM: 617608) is associated with autosomal recessive familial hypertrophic cardiomyopathy-27 (CMH27, OMIM: 618052). Recently, several studies have shown that monoallelic premature terminating variants (PTVs) in ALPK3 are associated with adult-onset autosomal dominant hypertrophic cardiomyopathy (HCMP). However, these studies were performed on patient cohorts mainly from European Caucasian backgrounds. Methods: To determine if this finding is replicated in the Korean HCMP cohort, we evaluated 2,366 Korean patients with non-syndromic HCMP using exome sequencing and compared the cohort dataset with three independent population databases. Results: We observed that monoallelic PTVs in ALPK3 were also significantly enriched in Korean patients with HCMP with an odds ratio score of 10-21. Conclusions: We suggest that ALPK3 PTV carriers be considered a risk group for developing HCMP and be monitored for cardiomyopathies.

3.
Am J Med Genet A ; 194(11): e63798, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38924341

RESUMEN

Although next-generation sequencing has enabled diagnoses for many patients with Mendelian disorders, the majority remain undiagnosed. Here, we present a sibling pair who were clinically diagnosed with Escobar syndrome, however targeted gene testing was negative. Exome sequencing (ES), and later genome sequencing (GS), revealed compound heterozygous TTN variants in both siblings, a maternally inherited frameshift variant [(NM_133378.4):c.36812del; p.(Asp12271Valfs*10)], and a paternally inherited missense variant [(NM_133378.4):c.12322G > A; p.(Asp4108Asn)]. This result was considered nondiagnostic due to poor clinical fit and limited pathogenicity evidence for the missense variant of uncertain significance (VUS). Following initial nondiagnostic RNA sequencing (RNAseq) on muscle and further pursuit of other variants detected on the ES/GS, a reanalysis of noncanonical splice sites in the muscle transcriptome identified an out-of-frame exon retraction in TTN, near the known VUS. Interim literature included reports of patients with similar TTN variants who had phenotypic concordance with the siblings, and a diagnosis of a congenital titinopathy was given 4 years after the TTN variants had been initially reported. This report highlights the value of reanalysis of RNAseq with a different approach, expands the phenotypic spectrum of congenital titinopathy and also illustrates how a perceived phenotypic mismatch, and failure to consider known variants, can result in a prolongation of the diagnostic journey.


Asunto(s)
Conectina , Fenotipo , Humanos , Conectina/genética , Masculino , Femenino , Secuenciación del Exoma , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento , Hermanos , Mutación Missense/genética , Lactante
4.
Artículo en Inglés | MEDLINE | ID: mdl-38717911

RESUMEN

CONTEXT: The pituitary gland is key for childhood growth, puberty, and metabolism. Pituitary dysfunction is associated with a spectrum of phenotypes, from mild to severe. Congenital Hypopituitarism (CH) is the most commonly reported pediatric endocrine dysfunction with an incidence of 1:4000, yet low rates of genetic diagnosis have been reported. OBJECTIVE: We aimed to unveil the genetic etiology of CH in a large cohort of patients from Argentina. METHODS: We performed whole exome sequencing of 137 unrelated cases of CH, the largest cohort examined with this method to date. RESULTS: Of the 137 cases, 19.1% and 16% carried pathogenic or likely pathogenic variants in known and new genes, respectively, while 28.2% carried variants of uncertain significance. This high yield was achieved through the integration of broad gene panels (genes described in animal models and/or other disorders), an unbiased candidate gene screen with a new bioinformatics pipeline (including genes high loss of function intolerance), and analysis of copy number variants. Three novel findings emerged. First, the most prevalent affected gene encodes the cell adhesion factor ROBO1. Affected children had a spectrum of phenotypes, consistent with a role beyond pituitary stalk interruption syndrome. Second, we found that CHD7 mutations also produce a phenotypic spectrum, not always associated with full CHARGE syndrome. Third, we add new evidence of pathogenicity in the genes PIBF1 and TBC1D32, and report 13 novel candidate genes associated with CH (e.g. PTPN6, ARID5B). CONCLUSION: Overall, these results provide an unprecedented insight into the diverse genetic etiology of hypopituitarism.

5.
Neurol Genet ; 10(3): e200133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38617022

RESUMEN

Background and Objectives: Exome sequencing (ES) demonstrates a 20-50 percent diagnostic yield for patients with a suspected monogenic neurologic disease. Despite the proven efficacy in achieving a diagnosis for such patients, multiple barriers for obtaining exome sequencing remain. This study set out to assess the efficacy of ES in patients with primary neurologic phenotypes who were appropriate candidates for testing but had been unable to pursue clinical testing. Methods: A total of 297 patients were identified from the UCLA Clinical Neurogenomics Research Center Biobank, and ES was performed, including bioinformatic assessment of copy number variation and repeat expansions. Information regarding demographics, clinical indication for ES, and reason for not pursuing ES clinically were recorded. To assess diagnostic efficacy, variants were interpreted by a multidisciplinary team of clinicians, bioinformaticians, and genetic counselors in accordance with the American College of Medical Genetics and Genomics variant classification guidelines. We next examined the specific barriers to testing for these patients, including how frequently insurance-related barriers such as coverage denials and inadequate coverage of cost were obstacles to pursuing exome sequencing. Results: The cohort primarily consisted of patients with sporadic conditions (n = 126, 42.4%) of adult-onset (n = 239, 80.5%). Cerebellar ataxia (n = 225, 75.8%) was the most common presenting neurologic phenotype. Our study found that in this population of mostly adult patients with primary neurologic phenotypes that were unable to pursue exome sequencing clinically, 47 (15.8%) had diagnostic results while an additional 24 patients (8.1%) had uncertain results. Of the 297 patients, 206 were initially recommended for clinical exome but 88 (42.7%) could not pursue ES because of insurance barriers, of whom 14 (15.9%) had diagnostic findings, representing 29.8% of all patients with diagnostic findings. In addition, the incorporation of bioinformatic repeat expansion testing was valuable, identifying a total of 8 pathogenic repeat expansions (17.0% of all diagnostic findings) including 3 of the common spinocerebellar ataxias and 2 patients with Huntington disease. Discussion: These findings underscore the importance and value of clinical ES as a diagnostic tool for neurogenetic disease and highlight key barriers that prevent patients from receiving important clinical information with potential treatment and psychosocial implications for patients and family members.

6.
Mol Genet Genomic Med ; 12(3): e2410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433605

RESUMEN

BACKGROUND: Familial hypercholesterolemia (MIM: PS143890) is a genetic disorder characterized by an increase in blood cholesterol. LDLR is one of the genes which their defect contributes to the disorder. Affected individuals may carry a heterozygous variant or homozygous/compound heterozygous variants and those with biallelic pathogenic variants present more severe symptoms. METHOD: We report an Egyptian family with familial hypercholesterolemia. Both the proband and parents have the disorder while a sibling is unaffected. Exome sequencing was performed to identify the causal variant. RESULTS: LINE-1 insertion in exon 7 of LDLR was identified. Both parents have a heterozygous variant while the proband has a homozygous variant. The unaffected sibling did not carry the variant. DISCUSSION: This insertion may contribute to the high prevalence of hypercholesterolemia in Egypt and the finding underscores the importance of implementing mobile element insertion caller in routine bioinformatics pipeline.


Asunto(s)
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Biología Computacional , Egipto , Exones , Hiperlipoproteinemia Tipo II/genética , Elementos de Nucleótido Esparcido Largo
7.
Neurogenetics ; 25(3): 165-177, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499745

RESUMEN

Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.


Asunto(s)
Secuenciación del Exoma , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Masculino , Serbia , Femenino , Secuenciación del Exoma/métodos , Adulto , Persona de Mediana Edad , Variaciones en el Número de Copia de ADN , Linaje , Adulto Joven , Mutación , Estudios de Cohortes
8.
medRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352438

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

9.
Mol Genet Genomic Med ; 12(3): e2330, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265426

RESUMEN

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder, caused by a loss-of-function of either TSC1 or TSC2 gene. However, in 10%-15% TSC patients there is no pathogenic variant identified in either TSC1 or TSC2 genes based on standard clinical testing. METHODS: In this study, genome sequencing was performed for families with clinical diagnosis of TSC with negative results from TSC1 and TSC2 single-gene tests. RESULTS: Herein, we report a family presenting a classical TSC phenotype with an unusual, complex structural variant involving the TSC1 gene: an intrachromosomal inverted insertion in the long arm of chromosome 9. We speculate that the inverted 9q33.3q34.13 region was inserted into the q31.2 region with the 3'-end of the breakpoint of the inversion being located within the TSC1 gene, resulting in premature termination of TSC1. CONCLUSIONS: In this study, we demonstrate the utility of genome sequencing for the identification of complex chromosomal rearrangement. Because the breakpoints are located within the deep intronic/intergenic region, this copy-neutral variant was missed by the TSC1 and TSC2 single-gene tests and contributed to an unknown etiology. Together, this finding suggests that complex structural variants may be underestimated causes for the etiology of TSC.


Asunto(s)
Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Humanos , Proteínas Supresoras de Tumor/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Mutación , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Cromosomas Humanos Par 9 , República de Corea
10.
Lab Med ; 55(2): 204-208, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37467311

RESUMEN

OBJECTIVE: Intellectual developmental disorder (IDD) type 5 is an autosomal dominant (AD) disorder and is characterized by intellectual disability (ID), psychomotor developmental delay, variable autism phenotypes, microcephaly, and seizure. IDD can be caused by mutations in the SYNGAP1 gene, which encodes a Ras GTPase-activating protein. This study revealed a novel de novo nonsense variant in SYNGAP1. The identification of such variants is essential for genetic counseling in patients and their families. METHODS: Exome sequencing implicated the causative variant. Sanger sequencing and cosegregation analyses were used to confirm the variant. Multiple in silico analysis tools were applied to interpret the variant using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS: The de novo NM_006772.3(SYNGAP1):c.3685C>T variant was identified in an 11-year-old boy with severe intellectual disability, neurodevelopmental delay, speech disorder, ataxia, specific dysmorphic facial features, and aggressive behavior. CONCLUSION: The current study findings expand the existing knowledge of variants in SYNGAP1 that have been previously associated with nonsyndromic intellectual disability and autism, extending the spectrum of phenotypes associated with this gene. The data have implications for genetic diagnosis and counseling in similar phenotypic presentations.


Asunto(s)
Discapacidad Intelectual , Proteínas Activadoras de ras GTPasa , Niño , Humanos , Masculino , Genómica , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Irán , Mutación , Fenotipo , Proteínas Activadoras de ras GTPasa/genética
11.
Mol Genet Genomic Med ; 12(1): e2305, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37877434

RESUMEN

BACKGROUND: The chromodomain helicase DNA-binding protein 2 (CHD2) is a member of the ATP-dependent chromatin remodelling family of proteins, which are critical for the assembly and regulation of chromatin. De novo variants and deletions in the CHD2 gene have been associated with childhood-onset developmental and epileptic encephalopathies type 94 (DEE 94). This study reports a novel deleterious de novo heterozygous frameshift insertion variant in the CHD2 gene. METHODS: The causative variant was diagnosed using whole-exome sequencing. Sanger sequencing and cosegregation analysis were applied to confirm the candidate variant. Multiple in silico analysis tools were employed to interpret the variant using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS: A de novo deleterious variant, NM_001271.4:c.1570dup (NP_001262.3:p.Ser524PhefsTer30), in the CHD2 gene, was identified in a 16-year-old boy with an intellectual and developmental disability, seizures and speech problems. The de novo occurrence of the variant was confirmed by segregation analysis in the family. CONCLUSION: The findings of this study expand the existing knowledge of variants of the CHD2 gene and provide a detailed phenotype associated with this gene. These data could have implications for genetic diagnosis and counselling in similar conditions. Moreover, this information could be useful for therapeutic purposes, including the proper administration of medication to control epilepsy.


Asunto(s)
Discapacidades del Desarrollo , Habla , Adolescente , Humanos , Masculino , Discapacidades del Desarrollo/genética , Proteínas de Unión al ADN/genética , Mutación , Convulsiones
12.
Am J Hum Genet ; 111(1): 200-210, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118446

RESUMEN

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Asunto(s)
Proteínas de Unión al GTP , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Humanos , Drosophila melanogaster/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de Drosophila/genética
13.
Am J Hum Genet ; 110(12): 2112-2119, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37963460

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Humanos , Empalmosomas/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Síndrome , Malformaciones del Sistema Nervioso/genética , Pérdida de Heterocigocidad , Fenotipo
14.
BMC Med Genomics ; 16(1): 239, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821930

RESUMEN

AIM AND OBJECTIVE: Intellectual disability (ID) is a heterogeneous condition affecting brain development, function, and/or structure. The X-linked mode of inheritance of ID (X-linked intellectual disability; XLID) has a prevalence of 1 out of 600 to 1000 males. In the last decades, exome sequencing technology has revolutionized the process of disease-causing gene discovery in XLIDs. Nevertheless, so many of them still remain with unknown etiology. This study investigated four families with severe XLID to identify deleterious variants for possible diagnostics and prevention aims. METHODS: Nine male patients belonging to four pedigrees were included in this study. The patients were studied genetically for Fragile X syndrome, followed by whole exome sequencing and analysis of intellectual disability-related genes variants. Sanger sequencing, co-segregation analysis, structural modeling, and in silico analysis were done to verify the causative variants. In addition, we collected data from previous studies to compare and situate our work with existing knowledge. RESULTS: In three of four families, novel deleterious variants have been identified in three different genes, including ZDHHC9 (p. Leu189Pro), ATP2B3 (p. Asp847Glu), and GLRA2 (p. Arg350Cys) and also with new clinical features and in another one family, a reported pathogenic variant in the L1CAM (p. Glu309Lys) gene has been identified related to new clinical findings. CONCLUSION: The current study's findings expand the existing knowledge of variants of the genes implicated in XLID and broaden the spectrum of phenotypes associated with the related conditions. The data have implications for genetic diagnosis and counseling.


Asunto(s)
Discapacidad Intelectual , Humanos , Masculino , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Secuenciación del Exoma , Irán , Mutación , Genes Ligados a X , Linaje
15.
Ann Hum Genet ; 87(6): 295-301, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589173

RESUMEN

Intellectual disability (ID) and autism spectrum disorders (ASDs) are the most common developmental disorders in humans. Combined, they affect between 3% and 5% of the population. Although high-throughput genomic methods are rapidly increasing the pool of ASD genes, many cases remain idiopathic. AGO1 is one of the less-known genes related to ID/ASD. This gene encodes a core member protein of the RNA-induced silencing complex, which suppresses mRNA expression through cleavage, degradation, and/or translational repression. Generally, patients with defects in the AGO1 gene manifest varying degrees of ID, speech delay, and autistic behaviors. Herein, we used whole-exome sequencing (WES) to investigate an Iranian family with two affected members one of whom manifested ID and autism and the other showed borderline ID and schizophrenia. WES analysis identified a novel heterozygous truncating variant (NM_012199.5:c.1298G > A, p.Trp433Ter) in the AGO1 gene that co-segregated with the phenotypes using Sanger sequencing. Moreover, the structural analysis showed that due to this variant, two critical domains (Mid and PIWI) of the AGO1 protein have been lost, which has a detrimental effect on the protein's function and structure. To the best of our knowledge, schizophrenia has not been reported in patients with AGO1 deficiency, which is a novel phenotypic finding that expands the AGO1-related behavioral disorders. Moreover, this study's findings determined that patients with the same variant in the AGO1 gene may show heterogeneity in manifested phenotypes.

16.
medRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425688

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WBP4 (WW Domain Binding Protein 4) is part of the early spliceosomal complex, and was not described before in the context of human pathologies. Ascertained through GeneMatcher we identified eleven patients from eight families, with a severe neurodevelopmental syndrome with variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal and gastrointestinal abnormalities. Genetic analysis revealed overall five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including enrichment for abnormalities of the nervous system and musculoskeletal system genes, suggesting that the overlapping differentially spliced genes are related to the common phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a spliceosomopathy. Further functional studies are called for better understanding of the mechanism of pathogenicity.

17.
Mol Genet Genomic Med ; 11(12): e2261, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37496384

RESUMEN

BACKGROUND: ZNF142 gene is a protein-coding gene encoding Zinc Finger Protein 142. ZNF proteins are a vast group of cellular effectors with a wide range of functions such as signal transduction, transcriptional regulation, meiotic recombination, DNA repair, development, and cell migration. Mutations in the ZNF142 gene are related to neurodevelopmental disorder with impaired speech and hyperkinetic movements (NEDISHM). This study on a family with three affected siblings identified a pathogenic frameshift insertion variant. In addition, we conducted a review of the literature on previously reported ZNF142 gene variants and their clinical manifestations. MATERIALS AND METHODS: Three affected siblings with severe intellectual developmental disabilities and speech impairments, their parents, and other sibs in the family were included. The patients were studied by the whole exome sequencing. Sanger sequencing, co-segregation analysis, and in silico analysis were carried out to verify candidate variant. The identified variant was interpreted based on the ACMG guideline. RESULTS: We identified a frameshift insertion variant in the ZNF142 gene, NM_001379659.1: c.3755dup (NP_001366588.1:p.Arg1253ThrfsTer15), that was related to the clinical features of three patients. The identified variant was found to be pathogenic. CONCLUSION: The current study findings expand the existing knowledge of the variant on the ZNF142 gene implicated in the neurodevelopmental disorder, intellectual disability, and impaired speech and it presents a detailed clinical feature associated with related conditions. The data have implications for genetic diagnosis and counseling in families with the same disorders.


Asunto(s)
Discapacidad Intelectual , Niño , Humanos , Discapacidades del Desarrollo/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutagénesis Insercional , Hermanos , Habla
18.
Retina ; 43(11): 1945-1950, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37339455

RESUMEN

BACKGROUND/PURPOSE: To evaluate clinical outcomes and assess genotype-phenotype correlations in patients with familial exudative vitreoretinopathy (FEVR). METHODS: Clinical charts of 40 patients with FEVR were reviewed. FEVR was staged per Pendergast and Trese, and retinal dragging and folds further classified per Yaguchi et al. We performed whole-exome sequencing and compared clinical characteristics between genetic-positive and genetic-negative groups. RESULTS: The mean duration of follow-up was 5.4 years (range: 0.33, 15) for genetic-positive and 6.9 (range: 1, 20) for genetic-negative patients. The mean age at diagnosis was 5.6 years (0.25, 27) for genetic-positive and 6.0 (0, 32) for genetic-negative patients. Genetic-positive patients reported 100% full-term births and genetic-negative patients reported 45% full-term births ( P = 0.0012). There were more patients with retinal folds with all major vessels affected (Yaguchi's Group 4) in genetic-positive compared with genetic-negative patients (21.4% vs. 2.6%, P = 0.045). TSPAN12 was the most common (57.1%) genetic mutation in our population of which 50% exhibited asymmetric presentation. CONCLUSION: Patients who test positive for a typical FEVR gene mutation reported more term births and had more severe disease by Yaguchi's classification. TSPAN12 was the most common genetic mutation in our population and had highly asymmetrical disease.


Asunto(s)
Enfermedades Hereditarias del Ojo , Enfermedades de la Retina , Humanos , Vitreorretinopatías Exudativas Familiares/diagnóstico , Centros de Atención Terciaria , Fenotipo , Tetraspaninas/genética , Linaje , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/genética , Mutación , Estudios de Asociación Genética , Análisis Mutacional de ADN , Enfermedades Hereditarias del Ojo/genética
19.
Orphanet J Rare Dis ; 18(1): 131, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259171

RESUMEN

BACKGROUND: Optic atrophy-13 with retinal and foveal abnormalities (OPA13) (MIM #165510) is a mitochondrial disease in which apparent bilateral optic atrophy is present and sometimes followed by retinal pigmentary changes or photoreceptors degeneration. OPA13 is caused by heterozygous mutation in the SSBP1 gene, associated with variable mitochondrial dysfunctions. RESULTS: We have previously reported a 16-year-old Taiwanese male diagnosed with OPA13 and SSBP1 variant c.320G>A (p.Arg107Gln) was identified by whole exon sequence (WES). This variant was assumed to be de novo since his parents were clinically unaffected. However, WES and Sanger sequencing further revealed the proband's unaffected mother carrying the same SSBP1 variant with a 13% variant allele frequency (VAF) in her peripheral blood. That finding strongly indicates the maternal gonosomal mosaicism contributing to OPA13, which has not been reported before. CONCLUSIONS: In summary, we described the first case of OPA13 caused by maternal gonosomal mosaicism in SSBP1. Parental mosaicism could be a serious issue in OPA13 diagnosis, and appropriate genetic counseling should be considered.


Asunto(s)
Atrofia Óptica , Degeneración Retiniana , Humanos , Femenino , Masculino , Adolescente , Mosaicismo , Degeneración Retiniana/genética , Asesoramiento Genético , Mutación/genética , Proteínas de Unión al ADN , Proteínas Mitocondriales
20.
EMBO Mol Med ; 15(5): e17078, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066513

RESUMEN

Somatic and germline gain-of-function point mutations in RAF, one of the first oncogenes to be discovered in humans, delineate a group of tumor-prone syndromes known as the RASopathies. In this study, we document the first human phenotype resulting from the germline loss-of-function of the proto-oncogene RAF1 (a.k.a. CRAF). In a consanguineous family, we uncovered a homozygous p.Thr543Met variant segregating with a neonatal lethal syndrome with cutaneous, craniofacial, cardiac, and limb anomalies. Structure-based prediction and functional tests using human knock-in cells showed that threonine 543 is essential to: (i) ensure RAF1's stability and phosphorylation, (ii) maintain its kinase activity toward substrates of the MAPK pathway, and (iii) protect from stress-induced apoptosis mediated by ASK1. In Xenopus embryos, mutant RAF1T543M failed to phenocopy the effects of normal and overactive FGF/MAPK signaling, confirming its hypomorphic activity. Collectively, our data disclose the genetic and molecular etiology of a novel lethal syndrome with progeroid features, highlighting the importance of RTK signaling for human development and homeostasis.


Asunto(s)
Síndrome de Noonan , Proteínas Tirosina Quinasas Receptoras , Humanos , Recién Nacido , Desarrollo Embrionario/genética , Corazón , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA