RESUMEN
This study aimed to develop a nanostructured lipid carrier (NLC) capable of co-delivering paclitaxel (PTX) and programmed death-ligand 1 (PD-L1) small interfering RNA (siRNA) to enhance PTX bioavailability and bolster immunity through PD-L1 knockdown. We prepared a PTX-loaded NLC (P-NLC) and coated it with positively charged chitosan (Chi) to create P-NLC-Chi, which was subsequently conjugated to siRNA (P-NLC-Chi-siRNA). The P-NLC-Chi formulation was optimized using the Box-Behnken design. P-NLC-Chi measured 123.8 ± 0.52 nm (zeta potential, 22.71 ± 0.49 mV). By verifying the gel retardation assay and observing changes in the zeta potential, the optimal binding ratio of NLC to PD-L1 siRNA was identified as 50:1. The P-NLC-Chi-siRNA particle size was 181.97 ± 0.67 nm, with a zeta potential of 18.66 ± 0.23 mV. siRNA stability was observed in serum over a 24-h period. Enhanced cytotoxicity and intracellular uptake of the complex were evident in breast cancer cells and breast cancer-resistant cells (MCF-7 and MCF-7/ADR cells, respectively). Evaluation of P-glycoprotein-mediated efflux demonstrated that NLC mitigated drug efflux in MCF-7/ADR cells. Subcutaneous injection of P-NLC-Chi-siRNA into tumor-bearing BALB/c nude mice injected with MCF-7/ADR cells revealed a reduction in tumor size. In vitro and in vivo experiments indicated a significant reduction in PD-L1 mRNA expression levels. Additionally, an in vivo study revealed tumor-specific CD4 + and CD8 + T cell responses within the tumor tissue following the injection of P-NLC-Chi-siRNA. Our findings suggest that Chi-coated NLC for the co-delivery of PTX and PD-L1 siRNA has great potential as an innovative delivery system for chemoimmunotherapy.
RESUMEN
The gut communicates with the brain in a variety of ways known as the gut-brain axis (GBA), which is known to affect neurophysiological functions as well as neuronal disorders. Exosomes capable of passing through the blood-brain-barrier (BBB) have received attention as a mediator of gut-brain signaling and drug delivery vehicles. In conventional well plate-based experiments, it is difficult to observe the exosome movement in real time. Here, we developed a microfluidic-based GBA chip for co-culturing gut epithelial cells and neuronal cells and simultaneously observing exosome transport. The GBA-chip is aimed to mimic the in vivo situation of convective flow in blood vessels and convective and diffusive transport in the tissue interstitium. Here, fluorescence-labeled exosome was produced by transfection of HEK-293T cells with CD63-GFP plasmid. We observed in real time the secretion of CD63-GFP-exosomes by the transfected HEK-293T cells in the chip, and transport of the exosomes to neuronal cells and analyzed the dynamics of GFP-exosome movement. Our model is expected to enhance understanding of the roles of exosome in GBA.
Asunto(s)
Encéfalo , Exosomas , Dispositivos Laboratorio en un Chip , Humanos , Exosomas/metabolismo , Células HEK293 , Encéfalo/metabolismo , Encéfalo/citología , Técnicas de Cocultivo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Neuronas/metabolismo , Neuronas/citología , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Modelos BiológicosRESUMEN
Precise measurement and control of local heating in plasmonic nanostructures are vital for diverse nanophotonic devices. Despite significant efforts, challenges in understanding temperature-induced plasmonic nonlinearity persist, particularly in light absorption and near-field enhancement due to the absence of suitable measurement techniques. This study presents an approach allowing simultaneous measurements of light absorption and near-field enhancement through angle-resolved near-field scanning optical microscopy with iterative opto-thermal analysis. We revealed gold thin films exhibit sublinear nonlinearity in near-field enhancement due to nonlinear opto-thermal effects, while light absorption shows both sublinear and superlinear behaviors at varying thicknesses. These observations align with predictions from a simple harmonic oscillation model, in which changes in damping parameters affect light absorption and field enhancement differently. The sensitivity of our method was experimentally examined by measuring the opto-thermal responses of three-dimensional nanostructure arrays. Our findings have direct implications for advancing plasmonic applications, including photocatalysis, photovoltaics, photothermal effects, and surface-enhanced Raman spectroscopy.
RESUMEN
NSCLC, the most common type of lung cancer, is often diagnosed late due to minimal early symptoms. Its high risk of recurrence or metastasis post-chemotherapy makes DC-based immunotherapy a promising strategy, offering targeted cancer destruction, low side effects, memory formation, and overcoming the immune evasive ability of cancers. However, the limited response to DCs pulsed with single antigens remains a significant challenge. To overcome this, we enhanced DC antigen presentation by pulsing with TAAs. Our study focused on enhancing DC-mediated immune response specificity and intensity by combinatorial pulsing of TAAs, selected for their prevalence in NSCLC. We selected four types of TAAs expressed in NSCLC and pulsed DCs with the optimal combination. Next, we administered TAAs-pulsed DCs into the LLC1 mouse model to evaluate their anti-tumor efficacy. Our results showed that TAAs-pulsed DCs significantly reduced tumor size and promoted apoptosis in tumor tissue. Moreover, TAAs-pulsed DCs significantly increased total T cells in the spleen compared to the unpulsed DCs. Additionally, in vitro stimulation of splenocytes from the TAAs-pulsed DCs showed notable T-cell proliferation and increased IFN-γ secretion. Our findings demonstrate the potential of multiple TAA pulsing to enhance the antigen-presenting capacity of DCs, thereby strengthening the immune response against tumors.
RESUMEN
Dark-field microscopy (DFM) is a powerful label-free and high-contrast imaging technique due to its ability to reveal features of transparent specimens with inhomogeneities. However, owing to the Abbe's diffraction limit, fine structures at sub-wavelength scale are difficult to resolve. In this work, we report a single image super resolution DFM scheme using a convolutional neural network (CNN). A U-net based CNN is trained with a dataset which is numerically simulated based on the forward physical model of the DFM. The forward physical model described by the parameters of the imaging setup connects the object ground truths and dark field images. With the trained network, we demonstrate super resolution dark field imaging of various test samples with twice resolution improvement. Our technique illustrates a promising deep learning approach to double the resolution of DFM without any hardware modification.
RESUMEN
BACKGROUND: Urine-derived stem cells (UDSCs) can be easily isolated from urine and possess excellent stem cell characteristics, making them a promising source for cell therapeutics. Due to their kidney origin specificity, UDSCs are considered a superior therapeutic alternative for kidney diseases compared to other stem cells. To enhance the therapeutic potential of UDSCs, we developed a culture method that effectively boosts the expression of Klotho, a kidney-protective therapeutic factor. We also optimized the Good Manufacturing Practice (GMP) system to ensure stable and large-scale production of clinical-grade UDSCs from patient urine. In this study, we evaluated the in vivo safety and distribution of Klotho-enhanced UDSCs after intravenous administration in accordance with Good Laboratory Practice (GLP) regulations. METHODS: Mortality and general symptoms were continuously monitored throughout the entire examination period. We evaluated the potential toxicity of UDSCs according to the administration dosage and frequency using clinical pathological and histopathological analyses. We quantitatively assessed the in vivo distribution and retention period of UDSCs in major organs after single and repeated administration using human Alu-based qPCR analysis. We also conducted long-term monitoring for 26 weeks to assess the potential tumorigenicity. RESULTS: Klotho-enhanced UDSCs exhibited excellent homing potential, and recovered Klotho expression in injured renal tissue. Toxicologically harmful effects were not observed in all mice after a single administration of UDSCs. It was also verified that repeated administration of UDSCs did not induce significant toxicological or immunological adverse effects in all mice. Single and repeated administrated UDSCs persisted in the blood and major organs for approximately 3 days and cleared in most organs, except the lungs, within 2 weeks. UDSCs that remained in the lungs were cleared out in approximately 4-5 weeks. There were no significant differences according to the variation of sex and administration frequency. The tumors were found in the intravenous administration group but they were confirmed to be non-human origin. Based on these results, it was clarified that UDSCs have no tumorigenic potential. CONCLUSIONS: Our results demonstrate that Klotho-enhanced UDSCs can be manufactured as cell therapeutics through an optimized GMP procedure, and they can be safely administered without causing toxicity and tumorigenicity.
Asunto(s)
Lesión Renal Aguda , Riñón , Animales , Humanos , Ratones , Lesión Renal Aguda/terapia , Riñón/patología , Células Madre/metabolismo , Distribución TisularRESUMEN
Baicalin, a glucuronic flavone, is the major active component in the medicinal plant Scutellaria baicalensis. Herein, baicalin was irradiated by γ-rays to afford four unusual flavanones, baicalinols A (2), B (3), and C (4) and peroxybaicaleinol (5), and two known flavones, oroxylin A (6) and baicalein (7). The structures of the hydroxymethylated products were elucidated using nuclear magnetic resonance spectroscopy and mass spectrometry, and their absolute configuration was established using electronic circular dichroism spectroscopy. Novel hydroxymethylated flavanones 2 and 3 suppressed both nitric oxide (NO) production and the expression of inducible NO synthase and showed significantly higher anti-inflammatory activities in lipopolysaccharide-stimulated macrophages than the parent compound. These newly generated hydroxymethylated flavanones can be potentially used for treating inflammatory diseases.
Asunto(s)
Flavanonas , Plantas Medicinales , Óxido Nítrico , Flavonoides/farmacología , Flavonoides/química , Flavanonas/farmacología , Scutellaria baicalensis/química , Plantas Medicinales/químicaRESUMEN
Radiation molecularly transforms naturally occurring products by inducing the methoxylation, hydroxylation, and alkylation of parent compounds, thereby affecting the anti-inflammatory capacities of those compounds. Minaprine (1) modified by ionizing radiation generated the novel hydroxymethylation hydropyridazine (2), and its chemical structure was determined based on NMR and HRESIMS spectra. Compared to the original minaprine, the novel generated product showed a highly enhanced anti-inflammatory capacity inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 and DH82 macrophage cells. In addition, minaprinol (2) effectively inhibited cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) at the protein level and pro-inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10) production in macrophages.
Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , FN-kappa B/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Antiinflamatorios/química , Ciclooxigenasa 2/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7RESUMEN
Introduction: The ongoing SARS-CoV-2 pandemic has affected public health, the economy, and society. This study reported a nanotechnology-based strategy to enhance the antiviral efficacy of the antiviral agent remdesivir (RDS). Results: We developed a nanosized spherical RDS-NLC in which the RDS was encapsulated in an amorphous form. The RDS-NLC significantly potentiated the antiviral efficacy of RDS against SARS-CoV-2 and its variants (alpha, beta, and delta). Our study revealed that NLC technology improved the antiviral effect of RDS against SARS-CoV-2 by enhancing the cellular uptake of RDS and reducing SARS-CoV-2 entry in cells. These improvements resulted in a 211% increase in the bioavailability of RDS. Conclusion: Thus, the application of NLC against SARS-CoV-2 may be a beneficial strategy to improve the antiviral effects of antiviral agents.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , LípidosRESUMEN
Ticagrelor (TCG), an antiplatelet agent, has low solubility and permeability; thus, there are many trials to apply the pharmaceutical technology for the enhancement of TCG solubility and permeability. Herein, we have developed the TCG high-loaded nanostructured lipid carrier (HL-NLC) and solidified the HL-NLC to develop the oral tablet. The HL-NLC was successfully fabricated and optimized with a particle size of 164.5 nm, a PDI of 0.199, an encapsulation efficiency of 98.5%, and a drug loading of 16.4%. For the solidification of HL-NLC (S-HL-NLC), the adsorbent was determined based on the physical properties of the S-HL-NLC, such as bulk density, tap density, angle of repose, Hausner ratio, Carr's index, and drug content. Florite R was chosen because of its excellent adsorption capacity, excellent physical properties, and solubility of the powder after manufacturing. Using an S-HL-NLC, the S-HL-NLC tablet with HPMC 4 K was prepared, which is showed a released extent of more than 90% at 24 h. Thus, we have developed the sustained release tablet containing the TCG-loaded HL-NLC. Moreover, the formulations have exhibited no cytotoxicity against Caco-2 cells and improved the cellular uptake of TCG. In pharmacokinetic study, compared with raw TCG, the bioavailability of HL-NLC and S-HL-NLC was increased by 293% and 323%, respectively. In conclusion, we successfully developed the TCG high-loaded NLC tablet, that exhibited a sustained release profile and enhanced oral bioavailability.
Asunto(s)
Sistemas de Liberación de Medicamentos , Nanoestructuras , Humanos , Portadores de Fármacos/farmacocinética , Ticagrelor , Preparaciones de Acción Retardada , Células CACO-2 , Comprimidos , Lípidos , Tamaño de la PartículaRESUMEN
BACKGROUND: Optimization of MSNs is the most important process for efficient and safe drug delivery systems. OBJECTIVE: In this study, the physicochemical properties of MSNs were evaluated using various compositions of individual reagents. METHODS: MSNs were synthesized according to a modified Stöber method. The physicochemical properties of MSNs were evaluated. Spherical uniform particles were observed in the scanning electron microscope (SEM) and transmission electron microscopy (TEM) image and the meso-structure of MSNs was confirmed. The amorphous and specific hexagonal structure of MSNs was confirmed through Xray diffraction (XRD) and SAXRD. RESULTS: The particle size and surface area according to changes in amounts of reagents ranged from 34.5 ± 2.3 to 216.0 ± 17.1 nm and from 549.79 to 1154.26 m2/g, respectively. A linear relationship was found between the surface area of MSNs and the adsorption rate of methylene blue (MB). MSNs exhibited no apparent cytotoxic effect on Caco-2 cell up to 200 µg/mL. The amounts of tetramethyl ammonium silicate and tetraethyl ortho silicate (TEOS), NaOH, and hexadecyl trimethyl ammonium bromide (CTAB) were adjusted to control the particle size and surface area of MSNs, and it was found that the amounts of synthetic reagents affected the physicochemical properties such as particle size and surface area of MSNs. MSNs with a large surface area adsorbed a large amount of MB. CONCLUSION: These results indicated that drug adsorption is related to the surface area of MSNs. MSNs did not show cytotoxicity to Caco-2 cells. MSNs may be a promising nanomaterial that could be applied as a carrier for various drugs.
Asunto(s)
Antineoplásicos , Nanopartículas , Humanos , Células CACO-2 , Dióxido de Silicio/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Porosidad , Portadores de Fármacos/químicaRESUMEN
Low-intensity ultrasound (LIUS) enhances the proliferation rate of various mammalian stem cells through mechanical stimulation. This study quantitively finds suitable LIUS stimulation parameters for increasing the proliferation rate of human adipose-derived mesenchymal stem cells (hAdMSCs) for mass production. Various stimulation conditions of LIUS were assessed based on the beam pattern of the ultrasonic transducer and the attenuation of the sound waves. Using optimal LIUS stimulation parameters for enhancing proliferation of hAdMSCs taken from bromodeoxyuridine (BrdU) incorporation assay, long-term culture of hAdMSCs was performed for 16 days. The resultant hAdMSCs were characterized for various biomarkers such as CD34-, CD45-, CD73+, CD95+, CD105+ and cytological staining and a cytokine array assay. LIUS stimulation parameters found for enhancing the hAdMSCs proliferation were the frequency of 5 MHz, an intensity of 300 mWcm-2, a duration of 10 min per day, and continuous waves with a 100% duty cycle. The LIUS stimulated hAdMSCs group showed a 3.25-fold increase in the cell number compared to the control group after 16 days of culture. By confirming the effects of quantitatively measured LIUS stimulation on the enhancement of hAdMSCs proliferation, this study may be a foundation for the applications of LIUS stimulation in the industrial-scale production of hAdMSCs.
Asunto(s)
Células Madre Mesenquimatosas , Animales , Humanos , Células Cultivadas , Células Madre , Ultrasonografía , Ultrasonido , MamíferosRESUMEN
Zaltoprofen is a nonsteroidal anti-inflammatory drug with poor oral bioavailability. S(+)-zaltoprofen (SZPF)-loaded nanostructured lipid carriers (NLCs) were prepared to enhance oral bioavailability. SZPF-loaded NLCs (NLC-SZPF) were prepared using the hot-melting homogenization method and optimized using the Box-Behnken design. The characterization of optimized NLC-SZPF, in vitro release, cytotoxicity, cellular uptake, ex vivo permeability, and pharmacokinetic parameters were evaluated to confirm the advantages of NLC formulation. NLC-SZPF with a diameter of 105.5 ± 1.2 nm had a high encapsulation efficiency of 99.84 ± 0.01%. NLC-SZPF showed a sustained-release profile, high biocompatibility, and high permeability across the intestinal tract. The relative bioavailability of NLC-SZPF was 431.3% compared with that of SZPF after oral administration to experimental rats. NLC-SZPF was successfully optimized using experimental designs to enhance the oral bioavailability of SZPF. Hence, NLC-SZPF could be a promising approach to overcome the poor oral bioavailability of SZPF.
Asunto(s)
Portadores de Fármacos , Nanoestructuras , Ratas , Animales , Disponibilidad Biológica , Lípidos , Solubilidad , Tamaño de la Partícula , Administración Oral , ExcipientesRESUMEN
Although mesoporous silica nanoparticles (MSNs) are widely used as anticancer drug carriers, unmodified MSNs induce off-target effects and at high doses, there are adverse effects of hemolysis because of the interaction with the silanol group on the surface and cells. In this study, we developed doxorubicin (DOX)-loaded MSNs coated with mannose grafted poly (acrylic acid) copolymer (DOX@MSNs-man-g-PAA) to enhance the hemocompatibility and target efficacy to cancer cells. This uniform nanosized DOX@MSNs-man-g-PAA showed sustained and pH-dependent drug release with improved hemocompatibility over the bare MSNs. The uptake of the DOX@MSN-man-g-PAA in breast cancer cells was significantly improved by mannose receptor-mediated endocytosis, which showed significant increasing intracellular ROS and changes in mitochondrial membrane potential. This formulation exhibited superior tumor-suppressing activity in the MDA-MB-231 cells inoculated mice. Overall, the present study suggested the possibility of the copolymer-coated MSNs as drug carriers for cancer therapy.
Asunto(s)
Antineoplásicos , Nanopartículas , Resinas Acrílicas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Manosa , Ratones , Polímeros , Porosidad , Especies Reactivas de Oxígeno , Dióxido de SilicioRESUMEN
Renal fibrosis is an irreversible and progressive process that causes severe dysfunction in chronic kidney disease (CKD). The progression of CKD stages is highly associated with a gradual reduction in serum Klotho levels. We focused on Klotho protein as a key therapeutic factor against CKD. Urine-derived stem cells (UDSCs) have been identified as a novel stem cell source for kidney regeneration and CKD treatment because of their kidney tissue-specific origin. However, the relationship between UDSCs and Klotho in the kidneys is not yet known. In this study, we discovered that UDSCs were stem cells that expressed Klotho protein more strongly than other mesenchymal stem cells (MSCs). UDSCs also suppressed fibrosis by inhibiting transforming growth factor (TGF)-ß in HK-2 human renal proximal tubule cells in an in vitro model. Klotho siRNA silencing reduced the TGF-inhibiting ability of UDSCs. Here, we suggest an alternative cell source that can overcome the limitations of MSCs through the synergetic effect of the origin specificity of UDSCs and the anti-fibrotic effect of Klotho.
Asunto(s)
Riñón , Proteínas Klotho , Insuficiencia Renal Crónica , Células Madre , Femenino , Fibrosis , Glucuronidasa/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Regeneración , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , OrinaRESUMEN
We report sensing of single nanoparticles using disordered metallic nanoisland substrates supporting surface plasmon polaritons (SPPs). Speckle patterns arising from leakage radiation of elastically scattered SPPs provide a unique fingerprint of the scattering microstructure at the sensor surface. Experimental measurements of the speckle decorrelation are presented and shown to enable detection of sorption of individual gold nanoparticles and polystyrene beads. Our approach is verified through bright-field and fluorescence imaging of particles adhering to the nanoisland substrate.
RESUMEN
Microneedles (MNs), one of the transdermal drug delivery systems, have received extensive interest as an alternative to parenteral or parenteral administrations. For the successful drug delivery of coated MNs, the coated drug or chemical of MNs should be dissolved by skin's interstitial fluid and completely released from the MNs. Thus, the rapid disintegration of the drug from MNs plays a crucial role in ideal drug delivery of MNs. In this study, we developed the rapid disintegration coating formulation to reduce the application time of MN. The rapid disintegration MN was developed using polymers (PVA or HPMC), glycerol, croscarmellose sodium, tween 80, and Brij, as thickener, plasticizer, disintegrating agent, and surfactants, respectively. HPMC MN showed the burst release and rapid disintegration. Moreover, the drug from HPMC MN was successfully delivered into porcine skin within 1 min. In toxicological evaluation, the HPMC MN did not alter the liver and kidney function. Besides, HPMC MN did not induce the acute inflammation and change of skin structure after the application on rat skin. Thus, the coating formulation in this study could be one of the options for the development of safe and rapid disintegration MN.
Asunto(s)
Sistemas de Liberación de Medicamentos , Agujas , Administración Cutánea , Animales , Microinyecciones , Preparaciones Farmacéuticas , Ratas , Piel , PorcinosRESUMEN
In this work, we explore the use of machine learning for constructing the leakage radiation characteristics of the bright-field images of nanoislands from surface plasmon polariton based on the plasmonic random nanosubstrate. The leakage radiation refers to a leaky wave of surface plasmon polariton (SPP) modes through a dielectric substrate which has drawn interest due to its possibility of direct visualization and analysis of SPP propagation. A fast-learning two-layer neural network has been deployed to learn and predict the relationship between the leakage radiation characteristics and the bright-field images of nanoislands utilizing a limited number of training samples. The proposed learning framework is expected to significantly simplify the process of leaky radiation image construction without the need of sophisticated equipment. Moreover, a wide range of application extensions can be anticipated for the proposed image-to-image prediction.
RESUMEN
In this article, we report the use of randomly structured light illumination for chemical imaging of molecular distribution based on Raman microscopy with improved image resolution. Random structured basis images generated from temporal and spectral characteristics of the measured Raman signatures were superposed to perform structured illumination microscopy (SIM) with the blind-SIM algorithm. For experimental validation, Raman signatures corresponding to Rhodamine 6G (R6G) in the waveband of 730-760 nm and Raman shift in the range of 1096-1634 cm-1 were extracted and reconstructed to build images of R6G. The results confirm improved image resolution using the concept and hints at super-resolution by almost twice better than the diffraction-limit.
RESUMEN
Curcumin (CUR) has been used in the treatment of various diseases such as cough, fever, skin disease, and infection because of various biological benefits such as anti-inflammatory, antiviral, antibacterial, and antitumor activity. However, CUR is a BCS class 4 group and has a limitation of low bioavailability due to low solubility and permeability. Therefore, the purpose of this study is to prepare a nanosuspension (NSP) loaded with CUR (CUR-NSP) using a statistical design approach to improve the oral bioavailability of CUR, and then to develop CUR-NSP coated with tannic acid to increase the mucoadhesion in the GI tract. Firstly, the optimized CUR-NSP, composed of sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone/vinyl acetate (PVP/VA), was modified with tannic acid (TA). The particle size and polydispersity index of the formulation measured by laser scattering analyzer were 127.7 ± 1.3 nm and 0.227 ± 0.010, respectively. In addition, the precipitation in distilled water (DW) was 1.52 ± 0.58%. Using a differential scanning calorimeter and X-ray diffraction analysis, the stable amorphous form of CUR was confirmed in the formulation, and it was confirmed that CUR-NSP formulation was coated with TA through a Fourier transform-infrared spectroscopy. In the mucoadhesion assay using the turbidity, it was confirmed that TA-CUR-NSP had higher affinity for mucus than CUR-NSP under all pH conditions. This means that the absorption of CUR can be improved by increasing the retention time in the GI tract of the formulation. In addition, the drug release profile showed more than 80% release, and in the cellular uptake study, the absorption of the formulation (TA-CUR-NSP) containing TA acting as an inhibitor of P-gp was increased by 1.6-fold. In the evaluation of antioxidant activity, the SOD activity of TA-CUR-NSP was remarkably high due to TA, which improves cellular uptake and has antioxidant activity. In the pharmacokinetic evaluation, the maximum drug plasma concentration of the TA-coated NSP formulation was 7.2-fold higher than that of the pure drug. In all experiments, it was confirmed that the TA-CUR-NSP is a promising approach to overcome the low oral bioavailability of CUR.