RESUMEN
Liposomes are applied to various anticancer treatments as representative drug delivery carriers. However, liposomes do not have their own targeting properties; therefore, there are limitations in drug delivery to specific tissues or cells. High targetability in drug delivery is an important factor in improving bioavailability and drug efficacy and reducing side effects; recent research has been actively investigated to modify the surface of liposomes to give them specific functions. In this study, we studied a drug delivery system for anticancer treatment that enhances targeting ability through fusion with exosomes on the surface of liposomes. We designed exosome-liposome hybrid nanoparticles loaded with a gemcitabine prodrug as a treatment for pancreatic ductal adenocarcinoma (PDAC). Membrane fusion with exosomes shows excellent targeting ability to pancreatic cancer cells due to intrinsic targeting ability and expansion of the macropinocytosis pathway.
Asunto(s)
Carcinoma Ductal Pancreático , Desoxicitidina , Ensayos de Selección de Medicamentos Antitumorales , Vesículas Extracelulares , Gemcitabina , Liposomas , Nanopartículas , Neoplasias Pancreáticas , Tamaño de la Partícula , Profármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Profármacos/química , Profármacos/farmacología , Humanos , Liposomas/química , Nanopartículas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Ensayo de Materiales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Antineoplásicos/química , Antineoplásicos/farmacologíaRESUMEN
Anticancer chemo-immunotherapy has gained considerable attention across various scientific domains as a prospective approach for the comprehensive eradication of malignant tumors. Recent research has particularly been focused on traditional anthracycline chemo drugs, such as doxorubicin and mitoxantrone. These compounds trigger apoptosis in tumor cells and evoke immunogenic cell death (ICD). ICD is a pivotal initiator of the cancer-immunity cycle by facilitating the release of damage-associated molecular patterns (DAMPs). The resultant DAMPs released from cancer cells effectively activate the immune system, resulting in an increase in tumor-infiltrating T cells. In this study, we have innovated a co-delivery strategy involving folate-modified liposomes to deliver doxorubicin and monophosphoryl lipid A (MPLA) simultaneously to tumor tissue. The engineered liposomes exploit the overexpression of folate receptors within the tumor tissues. Delivered doxorubicin initiates ICD at the tumor cells, further enhancing the immunogenic stimulus. Additionally, MPLA helps T cell priming by activating antigen-presenting cells. This intricate interplay culminates in a synergistic effect, ultimately resulting in an augmented and potentiated anticancer chemo-immunotherapeutic liposomal treatment.
Asunto(s)
Doxorrubicina , Muerte Celular Inmunogénica , Inmunoterapia , Lípido A , Liposomas , Receptor Toll-Like 4 , Liposomas/química , Doxorrubicina/farmacología , Doxorrubicina/química , Animales , Muerte Celular Inmunogénica/efectos de los fármacos , Humanos , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/metabolismo , Ratones , Lípido A/análogos & derivados , Lípido A/química , Lípido A/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Línea Celular Tumoral , Femenino , Antineoplásicos/química , Antineoplásicos/farmacología , Ácido Fólico/químicaRESUMEN
INTRODUCTION: Several studies have reported that pravastatin can mitigate the progression of kidney disease, but limited evidence exists regarding its effects on kidney function in Asian patients. This multicenter prospective observational study aimed to assess the effect of pravastatin on kidney function in Korean patients with dyslipidemia and type 2 diabetes mellitus (T2DM) in clinical practice. METHODS: This 48-week prospective multicenter study included 2604 of 2997 eligible patients with dyslipidemia and T2DM who had available estimated glomerular filtration rate (eGFR) measurements. The primary endpoint was eGFR percent change at week 24 from baseline. We also assessed secondary endpoints, which included percent changes in eGFR at weeks 12 and 48 from baseline, as well as changes in eGFR, metabolic profiles (lipid and glycemic levels) at 12, 24, and 48 weeks from baseline, and safety. RESULTS: We noted a significant improvement in eGFR, with mean percent changes of 2.5%, 2.5%, and 3.0% at 12, 24, and 48 weeks, respectively (all adjusted p < 0.05). The eGFR percent changes significantly increased in subgroups with baseline eGFR 30-90 mL/min/1.73 m2, glycated hemoglobin (HbA1c) ≥ 7 at baseline, no hypertension history, T2DM duration > 5 years, or previous statin therapy. Lipid profiles were improved and remained stable throughout the study, and interestingly, fasting glucose and HbA1c were improved at 24 weeks. CONCLUSION: Our findings suggest that pravastatin may have potential benefits for improving eGFR in Korean patients with dyslipidemia and T2DM. This could make it a preferable treatment option for patients with reduced kidney function. TRIAL REGISTRATION NUMBER: NCT05107063 submitted October 27, 2021.
Asunto(s)
Diabetes Mellitus Tipo 2 , Dislipidemias , Tasa de Filtración Glomerular , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Pravastatina , Humanos , Pravastatina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Dislipidemias/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Tasa de Filtración Glomerular/efectos de los fármacos , Estudios Prospectivos , Anciano , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , República de Corea , Adulto , Riñón/efectos de los fármacos , Riñón/fisiopatologíaRESUMEN
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Asunto(s)
Neoplasias de la Mama , Hidrogeles , Inmunoterapia , Hidrogeles/química , Hidrogeles/administración & dosificación , Humanos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Femenino , Inmunoterapia/métodos , Animales , Microambiente Tumoral , Sistemas de Liberación de MedicamentosRESUMEN
Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activationmediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells. [BMB Reports 2024; 57(6): 299-304].
Asunto(s)
Antígenos de Neoplasias , Melanoma , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Regiones Promotoras Genéticas/genética , Regulación Neoplásica de la Expresión Génica , Etopósido/farmacología , Histona Desacetilasa 1/metabolismo , Regulación hacia Abajo/efectos de los fármacosRESUMEN
Activating the glucagon-like peptide-1 (GLP-1) receptor by oral nucleic acid delivery would be a promising treatment strategy against hyperglycemia due to its various therapeutic actions. However, GLP-1 receptor agonists are effective only in subcutaneous injections because they face multiple barriers due to harsh gastrointestinal tract (GIT) conditions before reaching the site of action. The apical sodium bile acid transporter (ASBT) pathway at the intestinal site could be an attractive target to overcome the problem. Herein, we used our previously established multimodal carrier system utilizing bile salt, protamine sulfate, and calcium phosphate as excipients (PTCA) and the GLP-1 gene as an active ingredient (GENE) to test the effects of different formulation doses against diabetes and obesity. The carrier system demonstrated the ability to protect the GLP-1 model gene encoded within the plasmid at the GIT and transport it via ASBT at the target site. A single oral dose, regardless of quantity, showed the generation of GLP-1 and insulin from the body and maintained the normoglycemic condition by improving insulin sensitivity and blood sugar tolerance for a prolonged period. This oral gene therapy approach shows significantly higher therapeutic efficacy in preclinical studies than currently available US Food and Drug Administration-approved GLP-1 receptor agonists such as semaglutide and liraglutide. Also, a single oral dose of GENE/PTCA is more effective than 20 insulin injections. Our study suggests that oral GENE/PTCA formulation could be a promising alternative to injection-based therapeutics for diabetics, which is effective in long-term treatment and has been found to be highly safe in all aspects of toxicology.
RESUMEN
Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.
Asunto(s)
Proteínas de Unión al ARN , ARN , Humanos , Sitios de Unión , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Inmunoprecipitación , Levivirus/genética , Levivirus/metabolismo , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN/metabolismo , ARN/química , ARN/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/química , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Telomerasa/metabolismo , Telomerasa/genética , Modelos EstadísticosRESUMEN
We explored the genomic events underlying central neurocytoma (CN), a rare neoplasm of the central nervous system, via multiomics approaches, including whole-exome sequencing, bulk and single-nuclei RNA sequencing, and methylation sequencing. We identified FGFR3 hypomethylation leading to FGFR3 overexpression as a major event in the ontogeny of CN that affects crucial downstream events, such as aberrant PI3K-AKT activity and neuronal development pathways. Furthermore, we found similarities between CN and radial glial cells based on analyses of gene markers and CN tumor cells and postulate that CN tumorigenesis is due to dysregulation of radial glial cell differentiation into neurons. Our data demonstrate the potential role of FGFR3 as one of the leading drivers of tumorigenesis in CN.
Asunto(s)
Metilación de ADN , Células Ependimogliales , Neurocitoma , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Humanos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Neurocitoma/genética , Neurocitoma/patología , Neurocitoma/metabolismo , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Regulación Neoplásica de la Expresión GénicaRESUMEN
Catechol-based biomaterials demonstrate biocompatibility, making them suitable for a wide range of therapeutic applications when integrated into various molecular frameworks. However, the development of orally available catechol-based biomaterials has been hindered by significant pH variations and complex interactions in the gastrointestinal (GI) tract. In this study, we introduce a novel catechol-modified bile acid (CMBA), which is synthesized by anchoring the FDA-approved drug, ursodeoxycholic acid to the neurotransmitter dopamine. This modification could form a new apical sodium-dependent bile acid transporter (ASBT) inhibitor (ASBTi) due to the bile acid moiety. The computational analysis using the TRAnsient Pockets in Proteins (TRAPP) module, coupled with MD simulations, revealed that CMBA exhibits a strong binding affinity at residues 51-55 of ASBT with a low inhibitory constant (Ki) value. Notably, in slightly alkaline biological conditions, CMBA molecules self-assemble into carrier-free nanoparticles with an average size of 240.2 ± 44.2 nm, while maintaining their ability to bind with ASBT. When administered orally, CMBA accumulates in the ileum and liver over 24 h, exhibiting significant therapeutic effects on bile acid (BA) metabolism in a high-fat diet (HFD)-fed mouse model. This study underscores the therapeutic potential of the newly developed catechol-based, pH-responsive ASBT-inhibiting nanoparticles presenting a promising avenue for advancing therapy.
Asunto(s)
Ácidos y Sales Biliares , Catecoles , Nanopartículas , Transportadores de Anión Orgánico Sodio-Dependiente , Animales , Catecoles/química , Catecoles/metabolismo , Concentración de Iones de Hidrógeno , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Nanopartículas/química , Ratones , Humanos , Simportadores/metabolismo , Masculino , Ratones Endogámicos C57BLRESUMEN
Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFß), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Femenino , Embarazo , Placenta , Diferenciación Celular/genética , Trofoblastos/metabolismo , Proteína Morfogenética Ósea 5/metabolismoRESUMEN
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Asunto(s)
Enfermedades Neurodegenerativas , Proteínas Quinasas , Humanos , Transducción de Señal , Inflamación , ARNRESUMEN
Over the last decades, ionic liquids (IL) have shown great potential in non-invasive delivery starting from synthetic small molecules to biological large molecules. ILs are emerging as a particular class of drug delivery systems due to their unique physiochemical properties, simple surface modification, and functionalization. These features of IL help achieve specific design principles that are essential for a non-invasive drug delivery system. In this review, we have discussed IL and their applications in non-invasive drug delivery systems. We evaluated state-of-the-art development and advances of IL aiming to mitigate the biological and physical barriers to improve transdermal and oral delivery, summarized in this review. We also provided an overview of the various factors determining the systemic transportation of IL-based formulation. Additionally, we have emphasized how the ILs facilitate the transportation of therapeutic molecules by overcoming biological barriers.
Asunto(s)
Líquidos Iónicos , Humanos , Líquidos Iónicos/química , Sistemas de Liberación de Medicamentos , Administración CutáneaRESUMEN
Recent studies indicate that mitochondrial dysfunctions and DNA damage have a critical influence on cell survival, which is considered one of the therapeutic targets for cancer therapy. In this study, we demonstrated a comparative study of the effect of polyphenolic carbon quantum dots (CQDs) on in vitro and in vivo antitumor efficacy. Dual emissive (green and yellow) shape specific polyphenolic CQDs (G-CQDs and Y-CQDs) were synthesized from easily available nontoxic precursors (phloroglucinol), and the antitumor property of the as-synthesized probe was investigated as compared to round-shaped blue emissive CQDs (B-CQDs) derived from well-reported precursor citric acid and urea. The B-CQDs had a nuclei-targeting property, and G-CQDs and Y-CQDs had mitochondria-targeting properties. We have found that the polyphenol containing CQDs (at a dose of 100 µg mL-1) specifically attack mitochondria by excess accumulation, altering the metabolism, inhibiting branching pattern, imbalanced Bax/Bcl-2 homeostasis, and ultimately generating oxidative stress levels, leading to oxidative stress-induced cell death in cancer cells in vitro. We show that G-CQDs are the main cause of oxidative stress in cancer cells because of their ability to produce sufficient â¢OH- and 1O2 radicals, evidenced by electron paramagnetic resonance spectroscopy and a terephthalic acid test. Moreover, the near-infrared absorption properties of the CQDs were exhibited in two-photon (TP) emission, which was utilized for TP cellular imaging of cancer cells without photobleaching. The in vivo antitumor test further discloses that intratumoral injection of G-CQDs can significantly augment the treatment efficacy of subcutaneous tumors without any adverse effects on BalB/c nude mice. We believe that shape-specific polyphenolic CQD-based nanotheranostic agents have a potential role in tumor therapy, thus proving an insight on treatment of malignant cancers.
RESUMEN
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
RESUMEN
Gene therapy is an innovative approach in the field of regenerative medicine. This therapy entails the transfer of genetic material into a patient's cells to treat diseases. In particular, gene therapy for neurological diseases has recently achieved significant progress, with numerous studies investigating the use of adeno-associated viruses for the targeted delivery of therapeutic genetic fragments. This approach has potential applications for treating incurable diseases, including paralysis and motor impairment caused by spinal cord injury and Parkinson's disease, and it is characterized by dopaminergic neuron degeneration. Recently, several studies have explored the potential of direct lineage reprogramming (DLR) for treating incurable diseases, and highlighted the advantages of DLR over conventional stem cell therapy. However, application of DLR technology in clinical practice is hindered by its low efficiency compared with cell therapy using stem cell differentiation. To overcome this limitation, researchers have explored various strategies such as the efficiency of DLR. In this study, we focused on innovative strategies, including the use of a nanoporous particle-based gene delivery system to improve the reprogramming efficiency of DLR-induced neurons. We believe that discussing these approaches can facilitate the development of more effective gene therapies for neurological disorders.
RESUMEN
Radiopharmaceutical therapy, which can detect and treat tumours simultaneously, was introduced more than 80 years ago, and it has changed medical strategies with respect to cancer. Many radioactive radionuclides have been developed, and functional, molecularly modified radiolabelled peptides have been used to produce biomolecules and therapeutics that are vastly utilised in the field of radio medicine. Since the 1990s, they have smoothly transitioned into clinical application, and as of today, a wide variety of radiolabelled radionuclide derivatives have been examined and evaluated in various studies. Advanced technologies, such as conjugation of functional peptides or incorporation of radionuclides into chelating ligands, have been developed for advanced radiopharmaceutical cancer therapy. New radiolabelled conjugates for targeted radiotherapy have been designed to deliver radiation directly to cancer cells with improved specificity and minimal damage to the surrounding normal tissue. The development of new theragnostic radionuclides, which can be used for both imaging and therapy purposes, allows for more precise targeting and monitoring of the treatment response. The increased use of peptide receptor radionuclide therapy (PRRT) is also important in the targeting of specific receptors which are overexpressed in cancer cells. In this review, we provide insights into the development of radionuclides and functional radiolabelled peptides, give a brief background, and describe their transition into clinical application.
RESUMEN
Combined cancer immunotherapy has demonstrated promising potential with an amplified antitumor response and immunosuppressive tumor microenvironment (TME) modulation. However, one of the main issues that cause treatment failure is the poor diffusion and insufficient penetration of therapeutic and immunomodulatory agents in solid tumors. Herein, a cancer treatment approach that combines photothermal therapy (PTT) and nitric oxide (NO) gas therapy for tumor extracellular matrix (ECM) degradation, along with NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor that reduces tryptophan catabolism to kynurenine, and DMXAA, a stimulator of interferon gene (STING) agonist that stimulates antigen cross-presentation, is proposed to overcome this issue. Upon NIR (808 nm) laser irradiation, NO-GEL achieved the desired thermal ablation by releasing sufficient tumor antigens through immunogenic cell death (ICD). NO delivery triggered local diffusion of excess NO gas for effectively degrading tumor collagen in the ECM, homogeneously delivered NLG919 throughout the tumor tissue, inhibited IDO expression that was upregulated by PTT, and reduced the immune suppressive activities. The sustained release of DMXAA prolonged dendritic cell maturation and CD8+ T cell activation against the tumor. In summary, NO-GEL therapeutics offer a significant tumor regression with PTT and STING agonist combination that stimulates a durable antitumor immune response. Additional unification of IDO inhibition during PTT supplements the immunotherapy by reducing the T cell apoptosis and immune suppressive cell infiltration to TME. NO-GEL with the STING agonist and IDO inhibitor is an effective therapeutic combination to counter possible limitations during solid tumor immunotherapy.
RESUMEN
BACKGROUND: Graphene-based nanomaterials possess unique optical, physicochemical and biomedical properties which make them potential tools for imaging and therapy. Manganese oxide nanoparticles are attractive candidates for contrast agents in magnetic resonance imagint (MRI). We used manganese oxide (Mn3O4) and highly reduced graphene oxide (HRG) to synthesize hybrid nanoparticles (HRG-Mn3O4) and tested their efficacy for photodynamic therapy (PDT) in breast cancer cells. METHODS: The newly synthesized nanoparticles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, UV-visible spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetry, and X-ray diffraction (XRD) analyses. We used standard protocols of cytotoxicity and PDT after exposing A549 cells to various concentrations of hybrid nanoparticles (HRG-Mn3O4). We also performed fluorescence microscopy for live/dead cellular analysis. A549 cells were incubated with nanoparticles for 24 h and stained with fluorescein diacetate (green emission for live cells) and propidium iodide (red emission for dead cells) to visualize live and dead cells, respectively. RESULTS: The cell viability analysis showed that more than 98% of A549 cells survived even after the exposure of a high concentration (100 µg/mL) of nanomaterials. These results confirmed that the HRG-Mn3O4 nanoparticles are nontoxic and biocompatible at physiological conditions. When the cell viability analysis was performed after laser irradiation, we observed significant and concentration-dependent cytotoxicity of HRG-Mn3O4 as compared to Mn3O4 nanoparticles. Fluorescence microscopy showed that almost 100% cells were viable when treated with phosphate buffered saline or Mn3O4 while only few dead cells were detected after exposure of HRG-Mn3O4 nanoparticles. However, laser irradiation resulted in massive cellular damage by HRG-Mn3O4 nanoparticles which was directly related to the generation of reactive oxygen species (ROS). CONCLUSIONS: HRG-Mn3O4 hybrid nanoparticles are stable, biocompatible, nontoxic, and possess therapeutic potential for photodynamic therapy of cancer. Further studies are warranted to explore the MRI imaging ability of these nanomaterials using animal models of cancer.
Asunto(s)
Grafito , Nanopartículas , Fotoquimioterapia , Animales , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
The deposition of monosodium urate (MSU) crystals induces the overexpression of reactive oxygen species (ROS) and proinflammatory cytokines in residential macrophages, further promoting the infiltration of inflammatory leukocytes in the joints of gouty arthritis. Herein, a peroxidase-mimicking nanoscavenger was developed by forming manganese dioxide over albumin nanoparticles loaded with an anti-inflammatory drug, indomethacin (BIM), to block the secretion of ROS and COX2-induced proinflammatory cytokines in the MSU-induced gouty arthritis model. In the MSU-induced arthritis mouse model, the BIM nanoparticles alleviated joint swelling, which is attributed to the abrogation of ROS and inflammatory cytokine secretions from proinflammatory macrophages that induces neutrophil infiltration and fluid building up in the inflammation site. Further, the BIM nanoparticle treatment reduced the influx of macrophages and neutrophils in the injured region by blocking migration and inducing reverse migration in the zebrafish larva tail amputation model as well as in MSU-induced peritonitis and air pouch mouse models. Overall, the current strategy of employing biomineralized nanoscavengers for arthritis demonstrates clinical significance in dual blocking of peroxides and COX2 to prevent influx of inflammatory cells into the sites of inflammation.
Asunto(s)
Artritis Gotosa , Animales , Ratones , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Neutrófilos , Especies Reactivas de Oxígeno/efectos adversos , Pez Cebra , Ciclooxigenasa 2 , Ácido Úrico , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Citocinas , Macrófagos , Modelos Animales de EnfermedadRESUMEN
Exosomes are endosome-derived nanovesicles involved in cellular communication. They are natural nanocarriers secreted by various cells, making them suitable candidates for diverse drug delivery and therapeutic applications from a material standpoint. They have a phospholipid bilayer decorated with functional molecules and an enclosed parental matrix, which has attracted interest in developing designer/hybrid engineered exosome nanocarriers. The structural versatility of exosomes allows the modification of their original configuration using various methods, including genetic engineering, chemical procedures, physical techniques, and microfluidic technology, to load exosomes with additional cargo for expanded biomedical applications. Exosomes show enormous potential for overcoming the limitations of conventional nanoparticle-based techniques in targeted therapy. This review highlights the exosome sources, characteristics, state of the art in the field of hybrid exosomes, exosome-like nanovesicles and engineered exosomes as potential cargo delivery vehicles for therapeutic applications.