Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 14(5): e11305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711487

RESUMEN

Intraspecific variation in plant functional traits and ecological strategies is typically overlooked in most studies despite its pivotal role at the local scales and along short environmental gradients. While CSR theory has been used to classify ecological strategies (competitive C; stress-tolerant, S; ruderal, R) in different plant species, its ability to explain intraspecific variation in ecological strategies remains uncertain. Here, we sought to investigate intraspecific variation in ecological strategies for Pinus massoniana, a pioneer conifer tree for ecological restoration in Changting County, southeast China. By measuring key leaf traits and canopy height of 252 individuals at different ontogenetic stages from three plots spanning distinctive stages along early ecological restoration and calculating their C, S, and R scores, we constructed an intraspecific CSR system. All individual strategies shifted across three restoration stages, with adults from higher S component to higher C component while juveniles from higher S component to higher R component. Our results suggest that while strategies of all P. massoniana individuals start with tolerance to environmental stress, as restoration proceeds, adult transition towards completion for light, whereas juveniles shift to an acquisitive resource use. The study reveals an intraspecific pattern of strategy variation during forest restoration, contributing to our understanding of how plants adapt to diverse environments.

2.
Plants (Basel) ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256758

RESUMEN

Desiccation is a kind of extreme form of drought stress and desiccation tolerance (DT) is an ancient trait of plants that allows them to survive tissue water potentials reaching -100 MPa or lower. ScDREB10 is a DREB A-5 transcription factor gene from a DT moss named Syntrichia caninervis, which has strong comprehensive tolerance to osmotic and salt stresses. This study delves further into the molecular mechanism of ScDREB10 stress tolerance based on the transcriptome data of the overexpression of ScDREB10 in Arabidopsis under control, osmotic and salt treatments. The transcriptional analysis of weight gene co-expression network analysis (WGCNA) showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" were key pathways in the network of cyan and yellow modules. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) also showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways demonstrate the highest enrichment in response to osmotic and salt stress, respectively. Quantitative real-time PCR (qRT-PCR) results confirmed that most genes related to phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways in overexpressing ScDREB10 Arabidopsis were up-regulated in response to osmotic and salt stresses, respectively. In line with the results, the corresponding lignin, sucrose, and trehalose contents and sucrose phosphate synthase activities were also increased in overexpressing ScDREB10 Arabidopsis under osmotic and salt stress treatments. Additionally, cis-acting promoter element analyses and yeast one-hybrid experiments showed that ScDREB10 was not only able to bind with classical cis-elements, such as DRE and TATCCC (MYBST1), but also bind with unknown element CGTCCA. All of these findings suggest that ScDREB10 may regulate plant stress tolerance by effecting phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. This research provides insights into the molecular mechanisms underpinning ScDREB10-mediated stress tolerance and contributes to deeply understanding the A-5 DREB regulatory mechanism.

3.
J Hazard Mater ; 411: 124992, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454572

RESUMEN

Owing to the threat of cadmium (Cd2+) to public health, it is an urgent demand to develop effective, sensitive, and rapid methods for the detection of cadmium. In this study, indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and immunochromatographic test strips (ICTS) were established for the determination of Cd2+ based on the obtained mAb with high specificity and high affinity (Kaff = 3.0 × 109 L/moL). The linear range of ic-ELISA detection was 0.03-1.11 ng/mL and 50% inhibitive concentration (IC50) of cadmium ion was determined to be 0.15 ng/mL. The visual limit of detection (vLOD) of the AuNS-based strip was 0.375 ng/mL. The vLOD of AuNF-based strip using higher intensity reporter determined to be 0.03 ng/mL, which was enhanced 12 times compared to the traditional strip. In summary, the developed immunoassays based on mAb shows great potential for monitoring the cadmium ion in environmental samples.


Asunto(s)
Anticuerpos Monoclonales , Cadmio , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA