Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Exp Clin Cancer Res ; 41(1): 27, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35045886

RESUMEN

The RAS oncogene is both the most frequently mutated oncogene in human cancer and the first confirmed human oncogene to be discovered in 1982. After decades of research, in 2013, the Shokat lab achieved a seminal breakthrough by showing that the activated KRAS isozyme caused by the G12C mutation in the KRAS gene can be directly inhibited via a newly unearthed switch II pocket. Building upon this groundbreaking discovery, sotorasib (AMG510) obtained approval by the United States Food and Drug Administration in 2021 to become the first therapy to directly target the KRAS oncoprotein in any KRAS-mutant cancers, particularly those harboring the KRASG12C mutation. Adagrasib (MRTX849) and other direct KRASG12C inhibitors are currently being investigated in multiple clinical trials. In this review, we delve into the path leading to the development of this novel KRAS inhibitor, starting with the discovery, structure, and function of the RAS family of oncoproteins. We then examine the clinical relevance of KRAS, especially the KRASG12C mutation in human cancer, by providing an in-depth analysis of its cancer epidemiology. Finally, we review the preclinical evidence that supported the initial development of the direct KRASG12C inhibitors and summarize the ongoing clinical trials of all direct KRASG12C inhibitors.


Asunto(s)
Desarrollo de Medicamentos/métodos , Inmunoterapia/métodos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Humanos
2.
J Pathol ; 249(1): 102-113, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31038736

RESUMEN

Serotonin (5-HT) signaling pathways are thought to be involved in colorectal tumorigenesis (CRT), but the role of 5-HT synthesis in the early steps of this process is presently unknown. In this study, we used carcinogen treatment in the tryptophan hydroxylase 1 knockout (Tph1KO) and transgenic (Tph1fl/fl VillinCre ) mouse models defective in 5-HT synthesis to investigate the early mutagenic events associated with CRT. Our observations of the colonic crypt post-treatment followed a timeline designed to understand how disruption of 5-HT synthesis affects the initial steps leading to CRT. We found Tph1KO mice had decreased development of both allograft tumors and colitis-related CRT. Interestingly, carcinogenic exposure alone induced multiple colon tumors and increased cyclooxygenase-2 (Ptgs2) expression in Tph1KO mice. Deletion of interleukin 6 (Il6) in Tph1KO mice confirmed that inflammation was a part of the process. 5-HT deficiency increased colonic DNA damage but inhibited genetic repair of specific carcinogen-related damage, leading to CRT-related inflammatory reactions and dysplasia. To validate a secondary effect of 5-HT deficiency on another DNA repair pathway, we exposed Tph1KO mice to ionizing radiation and found an increase in DNA damage associated with reduced levels of ataxia telangiectasia and Rad3 related (Atr) gene expression in colonocytes. Restoring 5-HT levels with 5-hydroxytryptophan treatment decreased levels of DNA damage and increased Atr expression. Analysis of Tph1fl/fl VillinCre mice with intestine-specific loss of 5-HT synthesis confirmed that DNA repair was tissue specific. In this study, we report a novel protective role for 5-HT synthesis that promotes DNA repair activity during the early stages of colorectal carcinogenesis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Colon/metabolismo , Neoplasias Colorrectales/prevención & control , Daño del ADN , Reparación del ADN , Lesiones Precancerosas/prevención & control , Serotonina/biosíntesis , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interleucina-6/deficiencia , Interleucina-6/genética , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Transducción de Señal , Factores de Tiempo , Triptófano Hidroxilasa/deficiencia , Triptófano Hidroxilasa/genética
3.
Cancer Res ; 78(20): 5891-5900, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30104241

RESUMEN

Paclitaxel is an antineoplastic agent widely used to treat several solid tumor types. The primary mechanism of action of paclitaxel is based on microtubule stabilization inducing cell-cycle arrest. Here, we use several tumor models to show that paclitaxel not only induces tumor cell-cycle arrest, but also promotes antitumor immunity. In vitro, paclitaxel reprogrammed M2-polarized macrophages to the M1-like phenotype in a TLR4-dependent manner, similarly to LPS. Paclitaxel also modulated the tumor-associated macrophage (TAM) profile in mouse models of breast and melanoma tumors; gene expression analysis showed that paclitaxel altered the M2-like signature of TAMs toward an M1-like profile. In mice selectively lacking TLR4 on myeloid cells, for example, macrophages (LysM-Cre+/-/TLR4fl/fl), the antitumor effect of paclitaxel was attenuated. Gene expression analysis of tumor samples from patients with ovarian cancer before and after treatment with paclitaxel detected an enrichment of genes linked to the M1 macrophage activation profile (IFNγ-stimulated macrophages). These findings indicate that paclitaxel skews TAMs toward an immunocompetent profile via TLR4, which might contribute to the antitumor effect of paclitaxel and provide a rationale for new combination regimens comprising paclitaxel and immunotherapies as an anticancer treatment.Significance: This study provides new evidence that the antitumor effect of paclitaxel occurs in part via reactivation of the immune response against cancer, guiding tumor-associated macrophages toward the M1-like antitumor phenotype.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/20/5891/F1.large.jpg Cancer Res; 78(20); 5891-900. ©2018 AACR See related commentary by Garassino et al., p. 5729.


Asunto(s)
Macrófagos/metabolismo , Neoplasias/patología , Paclitaxel/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema Inmunológico , Inmunoterapia , Activación de Macrófagos , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
4.
Oncotarget ; 8(51): 89284-89306, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29179520

RESUMEN

Heregulins (HRGs) bind to the receptors HER3 or HER4, induce receptor dimerization, and trigger downstream signaling that leads to tumor progression and resistance to targeted therapies. Increased expression of HRGs has been associated with worse clinical prognosis; therefore, attempts to block HRG-dependent tumor growth have been pursued. This manuscript summarizes the function and signaling of HRGs and review the preclinical evidence of its involvement in carcinogenesis, prognosis, and treatment resistance in several malignancies such as colorectal cancer, non-small cell lung cancer, ovarian cancer, and breast cancer. Agents in preclinical development and clinical trials of novel therapeutics targeting HRG-dependent signaling are also discussed, including anti-HER3 and -HER4 antibodies, anti-metalloproteinase agents, and HRG fusion proteins. Although several trials have indicated an acceptable safety profile, translating preclinical findings into clinical practice remains a challenge in this field, possibly due to the complexity of downstream signaling and patterns of HRG, HER3 and HER4 expression in different cancer subtypes. Improving patient selection through biomarkers and understanding the resistance mechanisms may translate into significant clinical benefits in the near future.

5.
Pharmacol Res ; 117: 1-8, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27979692

RESUMEN

Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colinérgicos/farmacología , Colinérgicos/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Humanos , Sistema Inmunológico/efectos de los fármacos , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Nervio Vago/efectos de los fármacos
6.
Cancer Chemother Pharmacol ; 78(5): 881-893, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27590709

RESUMEN

PURPOSE: Intestinal mucositis and diarrhea are common manifestations of anticancer regimens that include irinotecan, 5-fluorouracil (5-FU), and other cytotoxic drugs. These side effects negatively impact therapeutic outcomes and delay subsequent cycles of chemotherapy, resulting in dose reductions and treatment discontinuation. Here, we aimed to review the experimental evidence regarding possible new targets for the management of irinotecan- and 5-FU-related intestinal mucositis. METHODS: A literature search was performed using the PubMed and MEDLINE databases. No publication time limit was set for article inclusion. RESULTS: Here, we found that clinical management of intestinal mucositis and diarrhea is somewhat ineffective at reducing symptoms, possibly due to a lack of specific targets for modulation. We observed that IL-1ß contributes to the apoptosis of enterocytes in mucositis induced by 5-FU. However, 5-FU-related mucositis is far less thoroughly investigated with regard to specific molecular targets when compared to irinotecan-related disease. Several studies have proposed that a correlation exists between the intestinal microbiota, the enterohepatic recirculation of active metabolites of irinotecan, and the establishment of mucositis. However, as reviewed here, this association seems to be controversial. In addition, the pathogenesis of irinotecan-induced mucositis appears to be orchestrated by interleukin-1/Toll-like receptor family members, leading to epithelial cell apoptosis. CONCLUSIONS: IL-1ß, IL-18, and IL-33 and the receptors IL-1R, IL-18R, ST2, and TLR-2 are potential therapeutic targets that can be modulated to minimize anticancer agent-associated toxicity, optimize cancer treatment dosing, and improve clinical outcomes. In this context, the pathogenesis of mucositis caused by other anticancer agents should be further investigated.


Asunto(s)
Antimetabolitos Antineoplásicos/efectos adversos , Antineoplásicos Fitogénicos/efectos adversos , Camptotecina/análogos & derivados , Fluorouracilo/efectos adversos , Enfermedades Intestinales/inducido químicamente , Mucositis/inducido químicamente , Camptotecina/efectos adversos , Citocinas/metabolismo , Humanos , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/patología , Irinotecán , Mucositis/metabolismo , Mucositis/patología , Receptores de Citocinas/efectos de los fármacos , Receptores de Citocinas/metabolismo
7.
Cancer Immunol Res ; 4(4): 312-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26817997

RESUMEN

Survivors from sepsis are in an immunosuppressed state that is associated with higher long-term mortality and risk of opportunistic infections. Whether these factors contribute to neoplastic proliferation, however, remains unclear. Tumor-associated macrophages (TAM) can support malignant cell proliferation, survival, and angiogenesis. We addressed the relationship between the post-sepsis state, tumor progression and TAM accumulation, and phenotypic and genetic profile, using a mouse model of sepsis resolution and then B16 melanoma in mice. In addition, we measured the serum concentrations of TNFα, TGFß, CCL2, and CXCL12 and determined the effect of in vivo CXCR4/CXCL12 inhibition in this context. Mice that survived sepsis showed increased tumor progression both in the short and long term, and survival times were shorter. TAM accumulation, TAM local proliferation, and serum concentrations of TGFß, CXCL12, and TNFα were increased. Naïve mice inoculated with B16 together with macrophages from post-sepsis mice also had faster tumor progression and shorter survival. Post-sepsis TAMs had less expression of MHC-II and leukocyte activation-related genes. Inhibition of CXCR4/CXCL12 prevented the post-sepsis-induced tumor progression, TAM accumulation, and TAM in situ proliferation. Collectively, our data show that the post-sepsis state was associated with TAM accumulation through CXCR4/CXCL12, which contributed to B16 melanoma progression.


Asunto(s)
Quimiocina CXCL12/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Sepsis/inmunología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Masculino , Melanoma Experimental , Ratones , Metástasis de la Neoplasia , Neoplasias/complicaciones , Neoplasias/patología , Sepsis/complicaciones , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
PLoS One ; 10(10): e0139985, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26440613

RESUMEN

Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL-1 and IL-18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL-1ß (405%), IL-18 (365%), COX-2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL-18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.


Asunto(s)
Bacteriemia/metabolismo , Diarrea/metabolismo , Enfermedades Intestinales/metabolismo , Mucositis/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/fisiología , Animales , Bacteriemia/inducido químicamente , Bacteriemia/genética , Camptotecina/análogos & derivados , Diarrea/inducido químicamente , Diarrea/genética , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/genética , Mucosa Intestinal/metabolismo , Irinotecán , Ratones , Ratones Noqueados , Mucositis/inducido químicamente , Mucositis/genética , Factor 88 de Diferenciación Mieloide/genética , Peroxidasa/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
9.
J Urol ; 194(6): 1777-86, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26220217

RESUMEN

PURPOSE: Hemorrhagic cystitis is an important dose limiting side effect of ifosfamide based cancer chemotherapy. Despite chemoprophylaxis inflammation can still be found in cystoscopy guided biopsies. Previous studies confirmed the role of TNF-α and IL-1ß. We evaluated the protective effect of the IL-1R antagonist anakinra and the anti-TNF-α antibody infliximab in experimental ifosfamide induced hemorrhagic cystitis. MATERIALS AND METHODS: Hemorrhagic cystitis was induced by an injection of ifosfamide (400 mg/kg intraperitoneally) in Swiss wild-type C57Bl/6, IL-1R-/-, TNFR1-/- or TNFR1/R2-/- mice. Mice were treated 30 minutes before ifosfamide with anakinra (100 mg/kg intraperitoneally), infliximab (5 mg/kg intraperitoneally) or vehicle. Visceral nociception was evaluated after hemorrhagic cystitis induction. At 12 hours the animals were sacrificed. Bladders were harvested to assess bladder wet weight, vascular permeability, macroscopic and microscopic findings, muscle contractility, and for cystometrography. Inflammatory cell infiltration was assessed by myeloperoxidase assay and flow cytometry. RESULTS: Anakinra attenuated hemorrhage, edema, neutrophil infiltration, visceral hyperalgesia and bladder dysfunction. IL-1R-/- mice also showed milder hemorrhagic cystitis. Infliximab inhibited bladder edema and visceral hyperalgesia without preventing hemorrhage, bladder dysfunction, neutrophils or accumulation. Additionally, the lack of TNFR1 decreased bladder edema but not cell infiltration whereas concomitant deficiency of TNFR1 and TNFR2 resulted in worse hemorrhagic cystitis. CONCLUSIONS: Anakinra is effective for preventing experimentally ifosfamide induced hemorrhagic cystitis. It seems that neutrophil and macrophage infiltration in this circumstance depends on IL-1 signaling through IL1R. Possibly TNFR2 has a protective role in hemorrhagic cystitis.


Asunto(s)
Cistitis/inducido químicamente , Cistitis/prevención & control , Hemorragia/inducido químicamente , Hemorragia/prevención & control , Ifosfamida/toxicidad , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Receptores de Interleucina-1/antagonistas & inhibidores , Animales , Cistitis/patología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Hemorragia/patología , Infliximab/farmacología , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA