Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 135: 156095, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39383632

RESUMEN

BACKGROUND: Intestinal ischemia/reperfusion injury (IRI) is a significant clinical emergency, and investigating novel therapeutic approaches and understanding their underlying mechanisms is essential for improving patient outcomes. Naringenin (Nar), a flavanone present in tomatoes and citrus fruits, is frequently consumed in the human diet and recognized for having immunomodulatory, anti-inflammatory, and antioxidant properties. Despite Nar being able to alleviate intestinal IRI, the exact molecular mechanisms remain elusive. PURPOSE: To investigate Nar's protective properties on intestinal IRI and elucidate the mechanisms, a comprehensive approach that combines network pharmacology analysis with experimental verification in vitro and in vivo was adopted. METHODS: The oxygen-glucose deprivation/reoxygenation (OGD/R) model in IEC-6 cells and a murine model of intestinal IRI were used. Nar's effects on intestinal IRI were assessed through histological analysis using H&E staining and tight junction (TJ) protein expression. Ferroptosis-related parameters, including iron levels, superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS), malondialdehyde (MDA), and mitochondrial morphology, were analyzed. Network pharmacology was utilized to predict the pathways through which Nar exerts its anti-ferroptosis effects. Further mechanistic insights were obtained through si-RNA transfection, YAP inhibitor (verteporfin, VP) treatment, ferroptosis inhibitor (Ferrostatin-1) and ferroptosis inducer (Erastin) application, co-immunoprecipitation (Co-IP) and Western blotting. RESULTS: Our results revealed that pretreatment with Nar significantly mitigated intestinal tissue damage and improved gut barrier function, as evidenced by increased TJ proteins (ZO-1 and Occludin). Nar reduced iron, MDA, and ROS, while it increased GSH and SOD levels. Additionally, Nar alleviated mitochondrial damage in mice. Nar treatment increased GPX4 and SLC7A11, while decreasing ACSL4 levels both in vivo and in vitro. Network pharmacology analysis suggested that Nar may target the Hippo signaling pathway. Notably, YAP, a key transcriptional co-activator within the Hippo pathway, was downregulated in intestinal IRI mice and OGD/R-induced IEC-6 cells. Nar pretreatment activated YAP, thereby augmenting anti-ferroptosis effects. The inhibition of YAP activation by VP or YAP knockdown increased p-STAT3 expression, thereby diminishing Nar's efficacy. Co-IP and immunofluorescence studies confirmed the interaction between YAP and STAT3. CONCLUSION: This study shows that Nar can inhibit ferroptosis in intestinal IRI via activating YAP, which in turn suppresses STAT3 phosphorylation, thereby unveiling a novel mechanism and supporting Nar's potential to be a promising therapeutic agent for intestinal IRI.

2.
Int Immunopharmacol ; 138: 112463, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971110

RESUMEN

Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.


Asunto(s)
Intestinos , Necroptosis , Daño por Reperfusión , Factor de Transcripción STAT3 , Transducción de Señal , Ácido Ursólico , Animales , Masculino , Ratones , Ratas , Línea Celular , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa , Intestinos/efectos de los fármacos , Intestinos/patología , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Ácido Ursólico/farmacología
3.
Int J Clin Pharm ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083220

RESUMEN

BACKGROUND: Remimazolam tosilate is a new type of benzodiazepine currently used for gastrointestinal endoscopy and can be combined with alfentanil. AIM: This trial compared the effectiveness and safety of remimazolam with alfentanil to propofol with alfentanil in patients undergoing gastrointestinal endoscopy. METHOD: One hundred and sixty-six patients were randomly divided into propofol-alfentanil anaesthesia (Group P) and remimazolam-alfentanil anaesthesia (Group R). The primary outcomes were perioperative haemodynamic variables, including systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR) and oxygen saturation (SpO2) preoperatively (T0); after anaesthesia induction (T1); when the gastroscope passed through the oropharynx (T2); 3 min (T3), 5 min (T4) and 7 min (T5) after T2; at the end of surgery (T6); and when patients successfully awakened (T7). The secondary outcomes included induction and awakening time, patient satisfaction, operator satisfaction, and adverse event occurrences. RESULTS: Compared with those in Group P, the SBP in Group R was significantly higher at T1, T2, T3, and T6 (P < 0.05); the DBP and MAP were significantly higher at T1, T2, T3, T5, and T6 (P < 0.05); the HR was significantly faster at T1 to T6 (P < 0.05); the SpO2 was significantly higher at T1 to T4 (P < 0.05); the incidences of hypoxemia, hypotension, and drug injection pain were significantly lower in Group R (P < 0.05); the incidence of hiccups was higher (P < 0.05); the awakening time was shorter in Group R (P < 0.05); and the operator satisfaction score was high (P < 0.05). CONCLUSION: Compared to propofol with alfentanil, remimazolam with alfentanil can be used safely and effectively for sedation in patients undergoing gastrointestinal endoscopy, with less impact on the patient's circulatory and respiratory systems and a lower incidence of adverse events. TRIAL REGISTRATION: This trial protocol was registered in the Chinese Clinical Trial Registry (ChiCR2300077252, date: 2023-11-02).

4.
Int J Surg ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884267

RESUMEN

Indocyanine green (ICG) is a fluorescent dye with an emission wavelength of about 840 nm, which is selectively absorbed by the liver after intravenous or bile duct injection, and then it is excreted into the intestines through the biliary system. With the rapid development of fluorescence laparoscopy, ICG fluorescence imaging is safe, feasible, and widely used in hepatobiliary surgery. ICG fluorescence imaging is of great significance in precise preoperative and intraoperative localization of liver lesions, real-time visualization of hepatic segmental anatomy, intrahepatic and extrahepatic biliary tract visualization, and liver transplantation. ICG fluorescence imaging facilitates efficient intraoperative hepatobiliary decision-making and improves the safety of minimally invasive hepatobiliary surgery. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool, improving the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery. Herin, we have reviewed the status of ICG applications in hepatobiliary surgery, aiming to provide new insights for the development of hepatobiliary surgery.

5.
BMC Anesthesiol ; 24(1): 172, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720250

RESUMEN

BACKGROUND: Low immune function after laparoscopic total gastrectomy puts patients at risk of infection-related complications. Low-dose naloxone (LDN) can improve the prognosis of patients suffering from chronic inflammatory diseases or autoimmune diseases. The use of LDN during perioperative procedures may reduce perioperative complications. The purpose of this study was to examine the effects of LDN on endogenous immune function in gastric cancer patients and its specific mechanisms through a randomized controlled trial. METHODS: Fifty-five patients who underwent laparoscopic-assisted total gastrectomy were randomly assigned to either a naloxone group (n = 23) or a nonnaloxone group (n = 22). Patients in the naloxone group received 0.05 µg/kg-1.h- 1naloxone from 3 days before surgery to 5 days after surgery via a patient-controlled intravenous injection (PCIA) pump, and patients in the nonnaloxone group did not receive special treatment. The primary outcomes were the rates of postoperative complications and immune function assessed by NK cell, CD3+ T cell, CD4+ T cell, CD8+ T cell, WBC count, neutrophil percentage, and IL-6 and calcitonin levels. The secondary outcomes were the expression levels of TLR4 (Toll-like receptor), IL-6 and TNF-α in gastric cancer tissue. RESULTS: Compared with the nonnaloxone group, the naloxone group exhibited a lower incidence of infection (in the incision, abdomen, and lungs) (P < 0.05). The numbers of NK cells and CD8+ T cells in the naloxone group were significantly greater than those in the nonnaloxone group at 24 h after surgery (P < 0.05) and at 96 h after surgery (P < 0.05). Compared with those in the nonnaloxone group, the CD3 + T-cell (P < 0.05) and CD4 + T-cell (P < 0.01) counts were significantly lower in the naloxone group 24 h after surgery. At 24 h and 96 h after surgery, the WBC count (P < 0.05) and neutrophil percentage (P < 0.05) were significantly greater in the nonnaloxone group. The levels of IL-6 (P < 0.05) and calcitonin in the nonnaloxone group were significantly greater at 24 h after surgery. At 24 h following surgery, the nonnaloxone group had significantly greater levels of IL-6 (P < 0.05) and calcitonin than did the naloxone group. Compared with those in the naloxone group, the expression levels of TLR4 (P < 0.05) in gastric cancer tissue in the naloxone group were greater; however, the expression levels of IL-6 (P < 0.01) and TNF-α (P < 0.01) in the naloxone group were greater than those in the nonnaloxone group. CONCLUSION: Laparoscopic total gastrectomy patients can benefit from 0.05 ug/kg- 1. h- 1 naloxone by reducing their risk of infection. It is possible that LDN alters the number of cells in lymphocyte subpopulations, such as NK cells, CD3 + T cells, and CD4 + T cells, and the CD4+/CD8 + T-cell ratio or alters TLR4 receptor expression in immune cells, thereby altering immune cell activity. TRIAL REGISTRATION: The trial was registered at the Chinese Clinical Trial Registry on 24/11/2023 (ChiCTR2300077948).


Asunto(s)
Gastrectomía , Laparoscopía , Naloxona , Complicaciones Posoperatorias , Neoplasias Gástricas , Humanos , Naloxona/administración & dosificación , Gastrectomía/métodos , Masculino , Femenino , Laparoscopía/métodos , Persona de Mediana Edad , Neoplasias Gástricas/cirugía , Complicaciones Posoperatorias/prevención & control , Anciano , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacología , Atención Perioperativa/métodos , Interleucina-6 , Receptor Toll-Like 4
6.
Biochem Biophys Res Commun ; 701: 149612, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316091

RESUMEN

Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.


Asunto(s)
Estrés del Retículo Endoplásmico , Daño por Reperfusión , Humanos , Respuesta de Proteína Desplegada , Intestinos , Apoptosis
7.
J Inflamm Res ; 16: 4941-4951, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936596

RESUMEN

Ferroptosis is a novel way of regulating cell death, which occurs in a process that is closely linked to intracellular iron metabolism, lipid metabolism, amino acid metabolism, and multiple signaling pathways. The latest research shows that ferroptosis plays a key role in the pathogenesis of acute kidney injury (AKI). Ferroptosis may be an important target for treating AKI caused by various reasons, such as ischemia-reperfusion injury, rhabdomyolysis syndrome, sepsis, and nephrotoxic drugs. This paper provides a review on the regulatory mechanisms of ferroptosis and its role in AKI, which may help to provide new research ideas for the treatment of AKI and future research.

8.
Eur J Pharmacol ; 959: 176090, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778612

RESUMEN

BACKGROUND: Intestinal ischemia/reperfusion injury (IRI) is a multifactorial, complex pathophysiological process in clinical settings. In recent years, intestinal IRI has received increasing attention due to increased morbidity and mortality. To date, there are no effective treatments. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been demonstrated to be effective against intestinal IRI. In this systematic review and meta-analysis, we evaluated the efficacy and potential mechanisms of DEX as a treatment for intestinal IRI in animal models. METHODS: Five databases (PubMed, Embase, Web of Science, Cochrane Library, and Scopus) were searched until March 15, 2023. Using the SYRCLE risk bias tool, we assessed methodological quality. Statistical analysis was conducted using STATA 12 and R 4.2.2. We analyzed the related outcomes (mucosa damage-related indicators; inflammation-relevant markers, oxidative stress markers) relied on the fixed or random-effects models. RESULTS: There were 15 articles including 18 studies included, and 309 animals were involved in the studies. Compared to the model groups, DEX improved intestinal IRI. DEX decreased Chiu's score and serum diamine oxidase (DAO) level. DEX reduced the level of inflammation-relevant markers (interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α). DEX also improved oxidative stress (decreased malondialdehyde (MDA), increased superoxide dismutase (SOD)). CONCLUSIONS: DEX's effectiveness in ameliorating intestinal IRI has been demonstrated in animal models. Antioxidation, anti-inflammation, anti-apoptotic, anti-pyroptosis, anti-ferroptosis, enhancing mitophagy, reshaping the gut microbiota, and gut barrier protection are possible mechanisms. However, in light of the heterogeneity and methodological quality of these studies, further well-designed preclinical studies are warranted before clinical implication.


Asunto(s)
Dexmedetomidina , Daño por Reperfusión , Ratas , Animales , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Ratas Sprague-Dawley , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Daño por Reperfusión/patología , Inflamación/tratamiento farmacológico , Isquemia/tratamiento farmacológico
9.
Bioengineered ; 14(1): 2253414, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37674357

RESUMEN

Intestinal ischemia-reperfusion (I/R) injury is a condition in which tissue injury is aggravated after ischemia due to recovery of blood supply. Bone marrow mesenchymal stem cell-derived exosome (BMSC-exo) showed a protective effect on I/R injury. This study aimed to investigate the possible mechanisms by which BMSC-exos ameliorate intestinal I/R injury. We isolated mouse BMSC-exos by super-centrifugation and found that they effectively increased cell viability in a cell model, alleviated intestinal barrier injury in a mouse model, and downregulated the expression of inflammatory cytokines and pyroptosis-related proteins, suggesting that BMSC-exos may alleviate intestinal I/R injury in vitro and in vivo by regulating pyroptosis. We identified miR-143-3p as a differentially expressed miRNA by microarray sequencing. Bioinformatic analysis predicted a binding site between miR-143-3p and myeloid differentiation factor 88 (MyD88); a dual-luciferase reporter assay confirmed that miR-143-3p could directly regulate the expression of MyD88. Our findings suggest that miR-143-3p regulates pyroptosis by regulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) through the toll-like receptor (TLR)-4/MyD88/nuclear factor kappa-B (NF-кB) pathway. This study describes a potential strategy for the treatment of intestinal I/R injury using BMSC-exos that act by regulating pyroptosis through the miR-143-3p mediated TLR4/MyD88/NF-кB pathway.


BMSC-exos ameliorate intestinal ischemia/reperfusion (I/R) injurymiR-143-3p levels were reduced in I/R injury and increased with BMSC-exo treatmentmiR-143-3p directly targeted and downregulated the expression of MyD88BMSC-exos regulate pyroptosis in intestinal I/R injury via the miR-143-3p-MyD88 axis.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Daño por Reperfusión , Animales , Ratones , Factor 88 de Diferenciación Mieloide , FN-kappa B , Piroptosis/genética , Daño por Reperfusión/genética , MicroARNs/genética
10.
Am J Chin Med ; 51(6): 1501-1526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37530507

RESUMEN

Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). Today, IBD has no successful treatment. As a result, it is of paramount importance to develop novel therapeutic agents for IBD prevention and treatment. Astragalus membranaceus (AMS) is a traditional Chinese medicine found in the AMS root. Modern pharmacological studies indicate that AMS and its constituents exhibit multiple bioactivities, such as anti-inflammatory, anti-oxidant, immune regulatory, anticancer, hypolipidemic, hypoglycemic, hepatoprotective, expectorant, and diuretic effects. AMS and its active constituents, which have been reported to be effective in IBD treatment, are believed to be viable candidate drugs for IBD treatment. These underlying mechanisms are associated with anti-inflammation, anti-oxidation, immunomodulation, intestinal epithelial repair, gut microbiota homeostasis, and improved energy metabolism. In this review, we summarize the efficacy and underlying mechanisms involved in IBD treatment with AMS and its active constituents in preclinical studies.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Astragalus propinquus , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis Ulcerosa/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Antioxidantes
11.
Biosci Rep ; 43(8)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37530723

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Salidroside (SAL), a phenolic natural product present in Rhodiola rosea, are commonly used in the treatment of various ischemic-hypoxic diseases, including intestinal ischemia-reperfusion (IR) injury. However, their efficacy and potential mechanisms in the treatment of intestinal IR injury have not been investigated. OBJECTIVE: The objective of the present study is to investigate the pharmacological mechanism of action of SAL on intestinal IR injury using a network pharmacology approach combined with experimental validation. METHODS: In the present study, we used the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database and analysis platform and Comparative Toxicogenomics Database (CTD) to predict possible target genes of SAL, collected relevant target genes of intestinal IR injury from GeneCards and DisGenet websites, and collected summary data to screen common target genes. Then, the protein-protein interaction (PPI) target network was constructed and analyzed by STRING database and Cytoscape 3.8.2 with the above intersecting genes. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed and the component-target-pathway network was constructed, followed by the use of molecular docking and molecular dynamic simulation to verify the possible binding conformation between SAL and candidate targets to further explore the potential targets of SAL in the treatment of intestinal IR injury. Finally, an in vivo model of mouse superior mesenteric artery ligation was established to assess the anti-intestinal IR injury effect of SAL by assessing histopathological changes in mouse small intestine by HE staining, detecting inflammatory factor expression by ELISA kit, and detecting the expression of key protein targets by Western blotting. RESULTS: A total of 166 SAL target genes and 1740 disease-related targets were retrieved, and 88 overlapping proteins were obtained as potential therapeutic targets. The pathway enrichment analysis revealed that the pharmacological effects of SAL on intestinal IR injury were anti-hypoxic, anti-inflammatory and metabolic pathway related, and the molecular docking and molecular dynamic simulation results showed that the core bioactive components had good binding affinity for TXNIP and AMPK, and the immunoblotting results indicated that the expression levels of TXNIP and AMPK in the small intestinal tissues of mice in the drug-treated group compared with the model group were significantly changed. CONCLUSION: SAL may target AMPK and TXNIP domains to act as a therapeutic agent for intestinal IR. These findings comprehensively reveal the potential therapeutic targets for SAL against intestinal IR and provide theoretical basis for the clinical application of SAL in the treatment of intestinal IR.


Asunto(s)
Medicamentos Herbarios Chinos , Daño por Reperfusión , Animales , Ratones , Farmacología en Red , Proteínas Quinasas Activadas por AMP , Simulación del Acoplamiento Molecular , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
12.
Curr Med Chem ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259936

RESUMEN

OBJECTIVES: This study aims to summarize the current literature to demonstrate the importance of circular RNAs (circRNAs) in multiple aspects of prostate cancer (PCa) occurrence, progression, and treatment resistance and explore the potential role in therapeutic strategies aimed at targeting this molecule in PCa. METHODS: The relevant literature from PubMed and Medline databases is reviewed in this article. RESULTS: Non-coding RNA has been proven to play a vital role in regulating tumor progression. Among them, circular RNA plays a more unique role due to its nonlinear structure. Lots of circRNAs were found to be differentially expressed in PCa and regulate cell signaling pathways by regulating particular gene expressions. Recent studies have demonstrated that circRNAs are associated with the chemoresistance of urinary tumors, suggesting that circRNAs might be a novel therapeutic target and a marker for therapeutic response and prognosis assessment. CONCLUSION: The potential crosstalk of circRNAs modifications in PCa development, therapy, and regulation of tumor metabolism is portrayed in this review. However, more preclinical and clinical trials of this targeted strategy are necessary for the treatment of urinary tumors.

13.
Aging (Albany NY) ; 15(9): 3586-3597, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142295

RESUMEN

BACKGROUND: Renal ischemia/reperfusion injury (IRI) induced pathological damage to renal microvessels and tubular epithelial cells through multiple factors. However, studies investigated whether miRNA155-5P targeted DDX3X to attenuate pyroptosis were scarce. RESULTS: The expression of pyroptosis-related proteins (caspase-1, interleukin-1ß (IL-1ß), NOD-like receptor family pyrin domain containing 3 (NLRP3), and IL-18) were up-regulated in the IRI group. Additionally, miR-155-5p was higher in the IRI group comparing with the sham group. The DDX3X was inhibited by the miR-155-5p mimic more than in the other groups. DEAD-box Helicase 3 X-Linked (DDX3X), NLRP3, caspase-1, IL-1ß, IL-18, LDH, and pyroptosis rates were higher in all H/R groups than in the control group. These indicators were higher in the miR-155-5p mimic group than in the H/R and the miR-155-5p mimic negative control (NC) group. CONCLUSIONS: Current findings suggested that miR-155-5p decreased the inflammation involved in pyroptosis by downregulating the DDX3X/NLRP3/caspase-1 pathway. METHODS: Using the models of IRI in mouse and the hypoxia-reoxygenation (H/R)-induced injury in human renal proximal tubular epithelial cells (HK-2 cells), we analyzed the changes in renal pathology and the expression of factors correlated with pyroptosis and DDX3X. Real-time reverse transcription polymerase chain reaction (RT-PCR) detected miRNAs and enzyme-linked immunosorbent assay (ELISA) was used to detect lactic dehydrogenase activity. The StarBase and luciferase assays examined the specific interplay of DDX3X and miRNA155-5P. In the IRI group, severe renal tissue damage, swelling, and inflammation were examined.


Asunto(s)
MicroARNs , Daño por Reperfusión , Humanos , Ratones , Animales , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Hipoxia , Inflamación , Isquemia , ARN Helicasas DEAD-box/genética
14.
Medicine (Baltimore) ; 102(15): e33453, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058073

RESUMEN

MicroRNAs (miRNAs) regulate gene expression involving kidney morphogenesis and cell proliferation, apoptosis, differentiation, migration, invasion, immune evasion, and extracellular matrix remodeling. Programmed cell death (PCD) is mediated and regulated by specific genes and a wealth of miRNAs, which participate in various pathological processes. Dysregulation of miRNAs can disrupt renal development and induce the onset and progression of various renal diseases. An in-depth understanding of how miRNAs regulate renal development and diseases is indispensable to comprehending how they can be used in new diagnostic and therapeutic approaches. However, the mechanisms are still insufficiently investigated. Hence, we review the current roles of miRNA-related signaling pathways and recent advances in PCD research and aim to display the potential crosstalk between miRNAs and PCD. The prospects of miRNAs as novel biomarkers and therapeutic targets are also described, which might provide some novel ideas for further studies.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , Biomarcadores , Diferenciación Celular
15.
Curr Med Chem ; 30(36): 4130-4148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36537607

RESUMEN

Intestinal ischemia-reperfusion injury is a relatively common clinical condition that seriously threatens the prognosis of patients; however, the exact mechanism of intestinal ischemia-reperfusion injury has not been clarified. Recent studies have found that noncoding RNAs, including but not limited to lncRNA, circRNA, and miRNA, play an important role in the pathogenesis of intestinal ischemia-reperfusion. The findings cited in this paper reveal the expression, function, and mechanism of noncoding RNAs during intestinal ischemia-reperfusion. The mechanistic roles of noncoding RNAs in the occurrence and development of intestinal ischemia-reperfusion are discussed, including cell proliferation, autophagy, oxidative stress, apoptosis, oxidative stress, iron death, and many other aspects. However, many unknown mechanisms of association between noncoding RNAs and intestinal ischemia-reperfusion remain to be investigated.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Humanos , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Isquemia
16.
Clin Transl Oncol ; 24(12): 2272-2284, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36008615

RESUMEN

Lung cancer is one of the most common malignant tumors with growing morbidity and mortality worldwide. Several treatments are used to manage lung cancer, including surgery, radiotherapy and chemotherapy, as well as molecular-targeted therapy. However, the current measures are still far from satisfactory. Therefore, the current research should focus on exploring the molecular mechanism and then finding an effective treatment. Interestingly, we and others have embarked on a line of investigations focused on the mechanism of lung cancer. Specifically, lncRNA small nucleolar RNA host gene has been shown to be associated with biological characteristics and therapeutic resistance of lung cancer. In addition, small nucleolar RNA host genes may be used as diagnostic biomarker in the future. Herein, we will provide a brief review demonstrating the importance of small nucleolar RNA host genes in lung cancer, especially non-small cell lung cancer. Although lncRNA has shown a crucial role in tumor-related research, a large number of studies are needed to validate its clinical application in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , ARN Nucleolar Pequeño
17.
Gut Pathog ; 14(1): 27, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733158

RESUMEN

Neutrophil extracellular traps (NETs) are extracellular reticular fibrillar structures composed of DNA, histones, granulins and cytoplasmic proteins that are delivered externally by neutrophils in response to stimulation with various types of microorganisms, cytokines and host molecules, etc. NET formation has been extensively demonstrated to trap, immobilize, inactivate and kill invading microorganisms and acts as a form of innate response against pathogenic invasion. However, NETs are a double-edged sword. In the event of imbalance between NET formation and clearance, excessive NETs not only directly inflict tissue lesions, but also recruit pro-inflammatory cells or proteins that promote the release of inflammatory factors and magnify the inflammatory response further, driving the progression of many human diseases. The deleterious effects of excessive release of NETs on gut diseases are particularly crucial as NETs are more likely to be disrupted by neutrophils infiltrating the intestinal epithelium during intestinal disorders, leading to intestinal injury, and in addition, NETs and their relevant molecules are capable of directly triggering the death of intestinal epithelial cells. Within this context, a large number of NETs have been reported in several intestinal diseases, including intestinal infections, inflammatory bowel disease, intestinal ischemia-reperfusion injury, sepsis, necrotizing enterocolitis, and colorectal cancer. Therefore, the formation of NET would have to be strictly monitored to prevent their mediated tissue damage. In this review, we summarize the latest knowledge on the formation mechanisms of NETs and their pathophysiological roles in a variety of intestinal diseases, with the aim of providing an essential directional guidance and theoretical basis for clinical interventions in the exploration of mechanisms underlying NETs and targeted therapies.

18.
Biochem Biophys Res Commun ; 618: 15-23, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35714566

RESUMEN

Hypoxia-inducible factor 1-α (HIF-1α) mediates the occurrence and development of renal diseases and fibrosis. In the process, dysregulated cellular metabolism was suggested to be involved in several pathological processes. Here, we found that HIF-1α expression was increased in the early stage of renal fibrosis, and significant metabolic remodeling was triggered. Epigenetic events that drive diseases were characterized previously. Our study showed that ten-eleven translocation-2 (TET2) was upregulated in both renal fibrosis models and metabolite-treated samples. Furthermore, we found that the promoter of α-SMA was hypomethylated at CpG sites, which promoted the expression of α-SMA and the occurrence of renal fibrosis. HIF-1α inhibition alleviated renal fibrosis development by improving metabolic remodeling and TET2 activation. Our studies provide novel insight into HIF-1α-mediated metabolic remodeling in the pathogenesis of renal fibrosis and propose a concept that targets this pathway to treat fibrotic disorders.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Enfermedades Renales , Túbulos Renales , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibrosis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología
19.
Stem Cell Res Ther ; 13(1): 216, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619154

RESUMEN

BACKGROUND: Intestinal ischemia-reperfusion injury (IRI) causes localized and distant tissue lesions. Multiple organ failure is a common complication of severe intestinal IRI, leading to its high rates of morbidity and mortality. Thus far, this is poorly treated, and there is an urgent need for new more efficacious treatments. This study evaluated the beneficial effects of mesenchymal stem cells (MSCs) therapy on intestinal IRI using many animal experiments. METHODS: We conducted a comprehensive literature search from 4 databases: Pubmed, Embase, Cochrane library, and Web of science. Primary outcomes included the survival rate, Chiu's score, intestinal levels of IL-6, TNF-α and MDA, as well as serum levels of DAO, D-Lactate, and TNF-α. Statistical analysis was carried out using Review Manager 5.3. RESULTS: It included Eighteen eligible researches in the final analysis. We demonstrated that survival rates in animals following intestinal IRI were higher with MSCs treatment compared to vehicle treatment. Besides, MSCs treatment attenuated intestinal injury caused by IRI, characterized by lower Chiu's score (- 1.96, 95% CI - 2.72 to - 1.19, P < 0.00001), less intestinal inflammation (IL-6 (- 2.73, 95% CI - 4.19 to - 1.27, P = 0.0002), TNF-α (- 3.00, 95% CI - 4.74 to - 1.26, P = 0.0007)) and oxidative stress (MDA (- 2.18, 95% CI - 3.17 to - 1.19, P < 0.0001)), and decreased serum levels of DAO (- 1.39, 95% CI - 2.07 to - 0.72, P < 0.0001), D-Lactate (- 1.54, 95% CI - 2.18 to - 0.90, P < 0.00001) and TNF-α (- 2.42, 95% CI - 3.45 to - 1.40, P < 0.00001). The possible mechanism for MSCs to treat intestinal IRI might be through reducing inflammation, alleviating oxidative stress, as well as inhibiting the apoptosis and pyroptosis of the intestinal epithelial cells. CONCLUSIONS: Taken together, these studies revealed that MSCs as a promising new treatment for intestinal IRI, and the mechanism of which may be associated with inflammation, oxidative stress, apoptosis, and pyroptosis. However, further studies will be required to confirm these findings.


Asunto(s)
Células Madre Mesenquimatosas , Daño por Reperfusión , Animales , Inflamación , Interleucina-6 , Lactatos , Células Madre Mesenquimatosas/patología , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Factor de Necrosis Tumoral alfa
20.
Dig Dis Sci ; 67(11): 5090-5106, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35624329

RESUMEN

BACKGROUND: Intestinal ischemia-reperfusion (I/R) injury is a critical pathophysiological process involved in many acute and critical diseases, and it may seriously threaten the lives of patients. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) may be an effective therapeutic approach for I/R injury. AIMS: This study aimed to investigate the role and possible mechanism of BMSC-exos in intestinal I/R injury in vivo and in vitro based on the miR-144-3p and PTEN/Akt/Nrf2 pathways. METHODS: BMSC-exos were isolated from mouse BMSCs by super centrifugation methods. The effects of BMSC-exos on I/R intestinal injury, intestinal cell apoptosis, oxidative stress and the PTEN/Akt/Nrf2 pathway were explored in vivo and in vitro. Furthermore, the relationship between miR-144-3p and PTEN was confirmed by a dual-luciferase reporter assay. The miR-144-3p mimic and inhibitor were used to further clarify the role of miR-144-3p in the mitigation of intestinal I/R by BMSC-exos. RESULTS: BMSC-exos effectively alleviated intestinal pathological injury, reduced intestinal cell apoptosis, relieved oxidative stress and regulated the PTEN/Akt/Nrf2 pathway in vivo and in vitro. In addition, miR-144-3p was significantly reduced in the oxygen and glucose deprivation/reperfusion cell model, and miR-144-3p could directly target PTEN to regulate its expression. Additional studies showed that changing the expression of miR-144-3p in BMSC-exos significantly affected the regulation of intestinal injury, intestinal cell apoptosis, oxidative stress and the PTEN/Akt/Nrf2 pathway in I/R, suggesting that miR-144-3p in BMSC-exos plays an important role in regulating the PTEN/Akt/Nrf2 during intestinal I/R. CONCLUSIONS: BMSC-exos carrying miR-144-3p alleviated intestinal I/R injury by regulating oxidative stress.


Asunto(s)
Exosomas , MicroARNs , Estrés Oxidativo , Daño por Reperfusión , Animales , Ratones , Exosomas/metabolismo , Glucosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Células Madre Mesenquimatosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA