Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
EFSA J ; 22(4): e8716, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681739

RESUMEN

Following the submission of dossier GMFF-2022-3670 under Regulation (EC) No 1829/2003 from Corteva Agriscience Belgium BV and Bayer Agriculture BV, the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant and insect-resistant genetically modified maize MON 89034 × 1507 × NK603, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and a search for additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × NK603 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-3670 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × NK603.

2.
EFSA J ; 22(4): e8714, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681741

RESUMEN

Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the GA20ox_SUP suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns. The Panel on Genetically Modified Organisms (GMO Panel) does not identify safety concerns regarding the toxicity and allergenicity of the GA20ox_SUP precursor-miRNA and derived mature miRNA as expressed in maize MON 94804 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 94804. In the context of this application, the consumption of food and feed from maize MON 94804 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 94804 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 94804 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 94804. The GMO Panel concludes that maize MON 94804 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

3.
EFSA J ; 22(4): e8715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38686342

RESUMEN

Following the joint submission of dossier GMFF-2022-9170 under Regulation (EC) No 1829/2003 from Bayer Agriculture B.V. and Corteva Agriscience Belgium B.V., the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant and insect resistant genetically modified maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, a search for additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-9170 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations.

4.
EFSA J ; 22(3): e8655, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38510324

RESUMEN

Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the mo-pat and zmm28 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP202216 and its comparator needs further assessment, except for the levels of stearic acid (C18:0), which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the PAT and ZMM28 proteins as expressed in maize DP202216, and finds no evidence that the genetic modification would change the overall allergenicity of maize DP202216. In the context of this application, the consumption of food and feed from maize DP202216 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP202216 is as safe as the comparator and non-GM reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP202216 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP202216. The GMO Panel concludes that maize DP202216 is as safe as its comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

5.
EFSA J ; 22(1): e8490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235311

RESUMEN

Genetically modified maize DP915635 was developed to confer tolerance to glufosinate herbicide and resistance to corn rootworm pests. These properties were achieved by introducing the ipd079Ea, mo-pat and pmi expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP915635 and its conventional counterpart needs further assessment, except for the levels of crude protein in forage, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD079Ea, PAT and PMI proteins expressed in maize DP915635. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize DP915635. In the context of this application, the consumption of food and feed from maize DP915635 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP915635 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP915635 grains into the environment, this would not raise environmental safety concerns. The post market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP915635. The GMO Panel concludes that maize DP915635 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

6.
EFSA J ; 22(1): e8483, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239495

RESUMEN

Genetically modified maize DP23211 was developed to confer control of certain coleopteran pests and tolerance to glufosinate-containing herbicide. These properties were achieved by introducing the pmi, mo-pat, ipd072Aa and DvSSJ1 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP23211 and its conventional counterpart needs further assessment, except for those in levels of histidine, phenylalanine, magnesium, phosphorus and folic acid in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD072Aa, PAT and PMI proteins and the DvSSJ1 dsRNA and derived siRNAs newly expressed in maize DP23211, and finds no evidence that the genetic modification impacts the overall safety of maize DP23211. In the context of this application, the consumption of food and feed from maize DP23211 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP23211 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP23211. The GMO Panel concludes that maize DP23211 is as safe as its conventional counterpart and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

7.
EFSA J ; 22(1): e8489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38250501

RESUMEN

Following the submission of dossier GMFF-2022-9450 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect protected genetically modified maize MON 810, for food and feed uses (including pollen), excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 810 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in dossier GMFF-2022-9450 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 810.

8.
EFSA J ; 21(10): e08312, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37908452

RESUMEN

EFSA Strategy 2027 outlines the need for fit-for-purpose protocols for EFSA generic scientific assessments to aid in delivering trustworthy scientific advice. This EFSA Scientific Committee guidance document helps address this need by providing a harmonised and flexible framework for developing protocols for EFSA generic assessments. The guidance replaces the 'Draft framework for protocol development for EFSA's scientific assessments' published in 2020. The two main steps in protocol development are described. The first is problem formulation, which illustrates the objectives of the assessment. Here a new approach to translating the mandated Terms of Reference into scientifically answerable assessment questions and sub-questions is proposed: the 'APRIO' paradigm (Agent, Pathway, Receptor, Intervention and Output). Owing to its cross-cutting nature, this paradigm is considered adaptable and broadly applicable within and across the various EFSA domains and, if applied using the definitions given in this guidance, is expected to help harmonise the problem formulation process and outputs and foster consistency in protocol development. APRIO may also overcome the difficulty of implementing some existing frameworks across the multiple EFSA disciplines, e.g. the PICO/PECO approach (Population, Intervention/Exposure, Comparator, Outcome). Therefore, although not mandatory, APRIO is recommended. The second step in protocol development is the specification of the evidence needs and the methods that will be applied for answering the assessment questions and sub-questions, including uncertainty analysis. Five possible approaches to answering individual (sub-)questions are outlined: using evidence from scientific literature and study reports; using data from databases other than bibliographic; using expert judgement informally collected or elicited via semi-formal or formal expert knowledge elicitation processes; using mathematical/statistical models; and - not covered in this guidance - generating empirical evidence ex novo. The guidance is complemented by a standalone 'template' for EFSA protocols that guides the users step by step through the process of planning an EFSA scientific assessment.

9.
EFSA J ; 21(6): e08031, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37377664

RESUMEN

Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Vip3Aa19 and APH4 proteins as expressed in cotton COT102 and finds no evidence that the genetic modification would change the overall allergenicity of cotton COT102. In the context of this application, the consumption of food and feed from cotton COT102 does not represent a nutritional concern for humans and animals. The GMO Panel concludes that cotton COT102 is as safe as the non-GM comparator and non-GM cotton varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton COT102 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton COT102. The GMO Panel concludes that cotton COT102 is as safe as its non-GM comparator and the tested non-GM cotton varieties with respect to potential effects on human and animal health and the environment.

10.
EFSA J ; 21(6): e08011, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284025

RESUMEN

Genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 was developed by crossing to combine six single events: Bt11, MIR162, MIR604, MON 89034, 5307 and GA21, the GMO Panel previously assessed the 6 single maize events and 27 out of the 56 possible subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the six-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that six-event stack maize, as described in this application, is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable six-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in 29 of the maize subcombinations not previously assessed and covered by the scope of this application and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the six-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21. The GMO Panel concludes that six-event stack maize and the 30 subcombinations covered by the scope of the application are as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

11.
EFSA J ; 21(4): e07934, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37122285

RESUMEN

Following the submission of application EFSA-GMO-RX-024 under Regulation (EC) No 1829/2003 from BASF Agricultural Solutions Seed US LLC, the Panel on Genetically Modified Organisms of EFSA was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant genetically modified oilseed rape MS8, RF3 and MS8 × RF3, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in oilseed rape MS8, RF3 and MS8 × RF3 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-024 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape MS8, RF3 and MS8 × RF3.

12.
EFSA J ; 21(1): e07729, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36721864

RESUMEN

Genetically modified maize GA21 × T25 was developed by crossing to combine two single events: GA21 and T25. The GMO Panel previously assessed the two single maize events and did not identify safety concerns. No new data on the single maize events were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in maize GA21 × T25 does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that maize GA21 × T25, as described in this application, is as safe as its conventional counterpart and the non-GM reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable maize GA21 × T25 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize GA21 × T25. Post-market monitoring of food and feed is not considered necessary. The GMO Panel concludes that maize GA21 × T25 is as safe as its conventional counterpart and the non-GM reference varieties tested, with respect to potential effects on human and animal health and the environment.

13.
EFSA J ; 21(1): e07730, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36698492

RESUMEN

Genetically modified maize MON 87419 was developed to confer tolerance to dicamba- and glufosinate-based herbicides. These properties were achieved by introducing the dmo and pat expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87419 and its conventional counterpart needed further assessment, except for the levels of arginine and protein in grains which did not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the dicamba mono-oxygenase (DMO) and phosphinothricin N-acetyltransferase (PAT) proteins as expressed in maize MON 87419. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87419. In the context of this application, the consumption of food and feed from maize MON 87419 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87419 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87419 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87419. The GMO Panel concludes that maize MON 87419 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

14.
EFSA J ; 20(12): e07685, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36545569

RESUMEN

Following the submission of application EFSA-GMO-RX-023 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV on behalf of Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant genetically modified soybean 40-3-2, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in soybean 40-3-2 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-023 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on soybean 40-3-2.

15.
EFSA J ; 20(11): e07590, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36349281

RESUMEN

Genetically modified oilseed rape GT73 was developed to confer herbicide tolerance; this property was achieved by introducing the single insert containing one copy of goxv247 and the CP4 epsps expression cassettes. The scope of the application EFSA-GMO-RX-026/2 is for the modification of the terms of the authorisation regarding the placing on the market of isolated seed protein from oilseed rape GT73 for food. Considering previous opinions on this event of the GMO Panel, the molecular characterisation data do not identify issues requiring additional food safety assessment. Based on previous assessments, no biologically relevant differences were identified in the compositional, agronomic and phenotypic characteristics of oilseed rape GT73 compared with its conventional counterpart, except for the newly expressed proteins. No new agronomic, phenotypic and compositional data in support of the comparative analysis were considered necessary in the context of this application. The GMO Panel did not identify indications of safety concern regarding toxicity, allergenicity or adjuvanticity related to the presence of the newly expressed proteins CP4 EPSPS and GOXv247 in oilseed rape GT73. Therefore, the GMO Panel concludes that in the context of this application, the consumption of oilseed rape GT73 does not represent any nutritional concern and is as safe as the conventional counterpart. No post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable oilseed rape GT73 into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of oilseed rape GT73. The GMO Panel concludes that oilseed rape GT73 is as safe as its conventional counterpart with respect to potential effects on human and animal health and the environment. These conclusions also apply to the placing on the food market of isolated seed protein produced from oilseed rape GT73.

16.
EFSA J ; 20(11): e07587, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381114

RESUMEN

Following the submission of application EFSA-GMO-RX-019 under Regulation (EC) No 1829/2003 from Corteva Agriscience LLC represented by Corteva Agriscience Belgium B.V., the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect resistant genetically modified cotton 281-24-236 × 3006-210-23, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. The GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-019 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on cotton 281-24-236 × 3006-210-23.

17.
EFSA J ; 20(11): e07589, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36415855

RESUMEN

Maize MON 87429 was developed to confer tolerance to dicamba, glufosinate, quizalofop and 2,4-D herbicides. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87429 and its conventional counterpart needs further assessment, except for the levels of phytic acid in grains, which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the DMO, PAT, FT_T and CP4 EPSPS proteins as expressed in maize MON 87429. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87429. In the context of this application, the consumption of food and feed from maize MON 87429 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87429 is as safe as the conventional counterpart and non-GM maize reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87429 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87429. The GMO Panel concludes that maize MON 87429, as described in this application, is as safe as its conventional counterpart and the tested non-GM maize reference varieties with respect to potential effects on human and animal health and the environment.

18.
EFSA J ; 20(11): e07588, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36398293

RESUMEN

Genetically modified maize MON 95379 was developed to confer insect protection against certain lepidopteran species. These properties were achieved by introducing the cry1B.868 and cry1Da_7 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 95379 and its conventional counterpart needs further assessment. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Cry1B.868 and Cry1Da_7 proteins as expressed in maize MON 95379. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 95379. In the context of this application, the consumption of food and feed from maize MON 95379 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 95379 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 95379. The GMO Panel concludes that maize MON 95379 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

19.
EFSA J ; 20(10): e07563, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36237418

RESUMEN

Following the submission of application EFSA-GMO-RX-026/1 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV on behalf of Bayer CropScience LP, the Panel on Genetically Modified Organisms of EFSA was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for foods and food ingredients containing, consisting of, or produced from oilseed rape GT73 with the exception of isolated seed protein, and feed produced from this GM oilseed rape, excluding cultivation in the EU. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and a search for additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in oilseed rape GT73 considered for renewal are identical to the sequences of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-026/1 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape GT73.

20.
EFSA J ; 20(10): e07621, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36274982

RESUMEN

In 2012, EFSA issued an opinion on plants developed through cisgenesis and intragenesis. With the development of New Genomic Techniques (NGTs) in the last decade, cisgenic and intragenic plants can now be obtained with the insertion of a desired sequence in a precise location of the genome. EFSA has been requested by European Commission to provide an updated scientific opinion on the safety and the risk assessment of plants developed through cisgenesis and intragenesis, in order to (i) identify potential risks, comparing them with those posed by plants obtained by conventional breeding and Established Genomic Techniques (EGTs) and (ii) to determine the applicability of current guidelines for the risk assessment of cisgenic and intragenic plants. The conclusions of the previous EFSA opinion were reviewed, taking into consideration the new guidelines and the recent literature. The GMO panel concludes that no new risks are identified in cisgenic and intragenic plants obtained with NGTs, as compared with those already considered for plants obtained with conventional breeding and EGTs. There are no new data since the publication of the 2012 EFSA opinion that would challenge the conclusions raised in that document. The conclusions of the EFSA 2012 Scientific Opinion remain valid. The EFSA GMO Panel reiterates from these conclusions that with respect to the source of DNA and the safety of the gene product, the hazards arising from the use of a related plant-derived gene by cisgenesis are similar to those from conventional plant breeding, whereas additional hazards may arise for intragenic plants. Furthermore, the EFSA GMO Panel considers that cisgenesis and intragenesis make use of the same transformation techniques as transgenesis, and therefore, with respect to the alterations to the host genome, cisgenic, intragenic and transgenic plants obtained by random insertion do not cause different hazards. Compared to that, the use of NGTs reduces the risks associated with potential unintended modifications of the host genome. Thus, fewer requirements may be needed for the assessment of cisgenic and intragenic plants obtained through NGTs, due to site-directed integration of the added genetic material. Moreover, the GMO panel concludes that the current guidelines are partially applicable and sufficient. On a case-by-case basis, a lesser amount of data might be needed for the risk assessment of cisgenic or intragenic plants obtained through NGTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA