Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
NMR Biomed ; 37(5): e5107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279190

RESUMEN

Hyperpolarized carbon-13 labeled compounds are increasingly being used in medical MR imaging (MRI) and MR imaging (MRI) and spectroscopy (MRS) research, due to its ability to monitor tissue and cell metabolism in real-time. Although radiological biomarkers are increasingly being considered as clinical indicators, biopsies are still considered the gold standard for a large variety of indications. Bioreactor systems can play an important role in biopsy examinations because of their ability to provide a physiochemical environment that is conducive for therapeutic response monitoring ex vivo. We demonstrate here a proof-of-concept bioreactor and microcoil receive array setup that allows for ex vivo preservation and metabolic NMR spectroscopy on up to three biopsy samples simultaneously, creating an easy-to-use and robust way to simultaneously run multisample carbon-13 hyperpolarization experiments. Experiments using hyperpolarized [1-13C]pyruvate on ML-1 leukemic cells in the bioreactor setup were performed and the kinetic pyruvate-to-lactate rate constants ( k PL ) extracted. The coefficient of variation of the experimentally found k PL s for five repeated experiments was C V = 35 % . With this statistical power, treatment effects of 30%-40% change in lactate production could be easily differentiable with only a few hyperpolarization dissolutions on this setup. Furthermore, longitudinal experiments showed preservation of ML-1 cells in the bioreactor setup for at least 6 h. Rat brain tissue slices were also seen to be preserved within the bioreactor for at least 1 h. This validation serves as the basis for further optimization and upscaling of the setup, which undoubtedly has huge potential in high-throughput studies with various biomarkers and tissue types.


Asunto(s)
Análisis de Flujos Metabólicos , Ácido Pirúvico , Ratas , Animales , Isótopos de Carbono , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Reactores Biológicos , Biomarcadores
2.
Commun Chem ; 4(1): 95, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-36697707

RESUMEN

Magnetic Resonance Imaging combined with hyperpolarized 13C-labelled metabolic contrast agents produced via dissolution Dynamic Nuclear Polarization can, non-invasively and in real-time, report on tissue specific aberrant metabolism. However, hyperpolarization equipment is expensive, technically demanding and needs to be installed on-site for the end-user. In this work, we provide a robust methodology that allows remote production of the hyperpolarized 13C-labelled metabolic contrast agents. The methodology, built on photo-induced thermally labile radicals, allows solid sample extraction from the hyperpolarization equipment and several hours' lifetime of the 13C-labelled metabolic contrast agents at appropriate storage/transport conditions. Exemplified with [U-13C, d7]-D-glucose, we remotely produce hyperpolarized 13C-labelled metabolic contrast agents and generate above 10,000-fold liquid-state Magnetic Resonance signal enhancement at 9.4 T, keeping on-site only a simple dissolution device.

3.
Sci Rep ; 10(1): 15413, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963286

RESUMEN

Pancreatic ß-cells become irreversibly damaged by long-term exposure to excessive glucose concentrations and lose their ability to carry out glucose stimulated insulin secretion (GSIS) upon damage. The ß-cells are not able to control glucose uptake and they are therefore left vulnerable for endogenous toxicity from metabolites produced in excess amounts upon increased glucose availability. In order to handle excess fuel, the ß-cells possess specific metabolic pathways, but little is known about these pathways. We present a study of ß-cell metabolism under increased fuel pressure using a stable isotope resolved NMR approach to investigate early metabolic events leading up to ß-cell dysfunction. The approach is based on a recently described combination of 13C metabolomics combined with signal enhanced NMR via dissolution dynamic nuclear polarization (dDNP). Glucose-responsive INS-1 ß-cells were incubated with increasing concentrations of [U-13C] glucose under conditions where GSIS was not affected (2-8 h). We find that pyruvate and DHAP were the metabolites that responded most strongly to increasing fuel pressure. The two major divergence pathways for fuel excess, the glycerolipid/fatty acid metabolism and the polyol pathway, were found not only to operate at unchanged rate but also with similar quantity.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Animales , Línea Celular , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Presión , Ácido Pirúvico/metabolismo , Ratas , Transducción de Señal/fisiología
4.
ACS Synth Biol ; 9(4): 733-748, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32142608

RESUMEN

Life is completely dependent on water. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O) and investigated the biological effects by a wide range of techniques, using Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism and growth retardation. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls, and aberrant cytoskeletal organization. By transcriptomics and genetic screens, we show that the solvent replacement activates two signaling pathways: (1) the heat-shock response pathway and (2) the cell integrity pathway. Although the heat-shock response system upregulates various chaperones and other stress-relieving enzymes, we find that the activation of this pathway does not offer any fitness advantage to the cells under the solvent-replaced conditions. However, limiting the D2O-triggered activation of the cell integrity pathway allows cell growth when H2O is completely replaced with D2O. The isolated D2O-tolerant strains may aid biological production of deuterated biomolecules.


Asunto(s)
Óxido de Deuterio/farmacología , Mutación/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Transducción de Señal/genética , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Óxido de Deuterio/metabolismo , Redes y Vías Metabólicas/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiología
5.
NMR Biomed ; 33(3): e4243, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31904900

RESUMEN

Under normal conditions, the heart mainly relies on fatty acid oxidation to meet its energy needs. Changes in myocardial fuel preference are noted in the diseased and failing heart. The magnetic resonance signal enhancement provided by spin hyperpolarization allows the metabolism of substrates labeled with carbon-13 to be followed in real time in vivo. Although the low water solubility of long-chain fatty acids abrogates their hyperpolarization by dissolution dynamic nuclear polarization, medium-chain fatty acids have sufficient solubility to be efficiently polarized and dissolved. In this study, we investigated the applicability of hyperpolarized [1-13 C]octanoate to measure myocardial medium-chain fatty acid metabolism in vivo. Scanning rats infused with a bolus of hyperpolarized [1-13 C]octanoate, the primary metabolite observed in the heart was identified as [1-13 C]acetylcarnitine. Additionally, [5-13 C]glutamate and [5-13 C]citrate could be respectively resolved in seven and five of 31 experiments, demonstrating the incorporation of oxidation products of octanoate into the tricarboxylic acid cycle. A variable drop in blood pressure was observed immediately following the bolus injection, and this drop correlated with a decrease in normalized acetylcarnitine signal (acetylcarnitine/octanoate). Increasing the delay before infusion moderated the decrease in blood pressure, which was attributed to the presence of residual gas bubbles in the octanoate solution. No significant difference in normalized acetylcarnitine signal was apparent between fed and 12-hour fasted rats. Compared with a solution in buffer, the longitudinal relaxation of [1-13 C]octanoate was accelerated ~3-fold in blood and by the addition of serum albumin. These results demonstrate the potential of hyperpolarized [1-13 C]octanoate to probe myocardial medium-chain fatty acid metabolism as well as some of the limitations that may accompany its use.


Asunto(s)
Caprilatos/metabolismo , Isótopos de Carbono/metabolismo , Ciclo del Ácido Cítrico , Imagen por Resonancia Magnética , Miocardio/metabolismo , Animales , Arterias/metabolismo , Glucemia/metabolismo , Ácido Láctico/sangre , Masculino , Redes y Vías Metabólicas , Metaboloma , Oxidación-Reducción , Ratas Wistar , Factores de Tiempo
6.
Methods Mol Biol ; 2037: 385-393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31463856

RESUMEN

Metabolite profiles and their isotopomer distributions can be studied noninvasively in complex mixtures with NMR. The advent of hyperpolarized 13C-NMR using quantitative dissolution Dynamic Nuclear Polarization (qdDNP) and isotope enrichment add sensitivity to such metabolic studies, enabling mapping and quantification of metabolic pathways and networks. Here we describe a sample preparation method, including cell incubation, extraction, and signal enhancement, for reproducible and quantitative analysis of hyperpolarized 13C-NMR metabolite spectra. We further illustrate how qdDNP can be applied to gain metabolic insights into living cells.


Asunto(s)
Isótopos de Carbono/análisis , Espectroscopía de Resonancia Magnética/métodos , Redes y Vías Metabólicas , Metabolómica/métodos , Polaridad Celular , Humanos
7.
J Phys Chem Lett ; 10(12): 3420-3425, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31181932

RESUMEN

We show that the trityl electron spin resonance (ESR) features, crucial for an efficient dynamic nuclear polarization (DNP) process, are sample-composition-dependent. Working at 6.7 T and 1.1 K with a generally applicable DNP sample solvent mixture such as water/glycerol plus trityl, the addition of Gd3+ leads to a dramatic increase in [U-13C] glucose polarization from 37 ± 4% to 69 ± 3%. This is the highest value reported to date and is comparable to what can be achieved on pyruvic acid. Moreover, performing ESR measurements under actual DNP conditions, we provide experimental evidence that gadolinium doping not only shortens the trityl electron spin-lattice relaxation time but also modifies the radical g-tensor. The latter yielded a considerable narrowing of the ESR spectrum line width. Finally, in the frame of the spin temperature theory, we discuss how these two phenomena affect the DNP performance.

9.
Angew Chem Int Ed Engl ; 58(5): 1334-1339, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30515929

RESUMEN

Free radicals generated by UV-light irradiation of a frozen solution containing a fraction of pyruvic acid (PA) have demonstrated their dissolution dynamic nuclear polarization (dDNP) potential, providing up to 30 % [1-13 C]PA liquid-state polarization. Moreover, their labile nature has proven to pave a way to nuclear polarization storage and transport. Herein, differently from the case of PA, the issue of providing dDNP UV-radical precursors (trimethylpyruvic acid and its methyl-deuterated form) not involved in any metabolic pathway was investigated. The 13 C dDNP performance was evaluated for hyperpolarization of [U-13 C6 ,1,2,3,4,5,6,6-d7 ]-d-glucose. The generated UV-radicals proved to be versatile and highly efficient polarizing agents, providing, after dissolution and transfer (10 s), a 13 C liquid-state polarization of up to 32 %.

10.
Anal Chem ; 90(18): 11131-11137, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30125087

RESUMEN

Ultrafast Laplace NMR (UF-LNMR), which is based on the spatial encoding of multidimensional data, enables one to carry out 2D relaxation and diffusion measurements in a single scan. Besides reducing the experiment time to a fraction, it significantly facilitates the use of nuclear spin hyperpolarization to boost experimental sensitivity, because the time-consuming polarization step does not need to be repeated. Here we demonstrate the usability of hyperpolarized UF-LNMR in the context of cell metabolism, by investigating the conversion of pyruvate to lactate in the cultures of mouse 4T1 cancer cells. We show that 13C ultrafast diffusion- T2 relaxation correlation measurements, with the sensitivity enhanced by several orders of magnitude by dissolution dynamic nuclear polarization (D-DNP), allows the determination of the extra- vs intracellular location of metabolites because of their significantly different values of diffusion coefficients and T2 relaxation times. Under the current conditions, pyruvate was located predominantly in the extracellular pool, while lactate remained primarily intracellular. Contrary to the small flip angle diffusion methods reported in the literature, the UF-LNMR method does not require several scans with varying gradient strength, and it provides a combined diffusion and T2 contrast. Furthermore, the ultrafast concept can be extended to various other multidimensional LNMR experiments, which will provide detailed information about the dynamics and exchange processes of cell metabolites.


Asunto(s)
Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neoplasias Mamarias Animales/metabolismo , Ácido Pirúvico/metabolismo , Animales , Línea Celular Tumoral , Femenino , Ratones
11.
Anal Chem ; 90(1): 674-678, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29200272

RESUMEN

Metabolite profiles and their isotopomer distributions can be studied noninvasively in complex mixtures with NMR. The advent of dissolution Dynamic Nuclear Polarization (dDNP) and isotope enrichment add sensitivity and resolution to such metabolic studies. Metabolic pathways and networks can be mapped and quantified if protocols that control and exploit the ex situ signal enhancement are created. We present a sample preparation method, including cell incubation, extraction and signal enhancement, to obtain reproducible and quantitative dDNP (qdDNP) NMR-based stable isotope-resolved analysis. We further illustrate how qdDNP was applied to gain metabolic insights into the phenotype of aggressive cancer cells.

12.
Sci Rep ; 7(1): 11719, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916775

RESUMEN

The mammalian brain relies primarily on glucose as a fuel to meet its high metabolic demand. Among the various techniques used to study cerebral metabolism, 13C magnetic resonance spectroscopy (MRS) allows following the fate of 13C-enriched substrates through metabolic pathways. We herein demonstrate that it is possible to measure cerebral glucose metabolism in vivo with sub-second time resolution using hyperpolarized 13C MRS. In particular, the dynamic 13C-labeling of pyruvate and lactate formed from 13C-glucose was observed in real time. An ad-hoc synthesis to produce [2,3,4,6,6-2H5, 3,4-13C2]-D-glucose was developed to improve the 13C signal-to-noise ratio as compared to experiments performed following [U-2H7, U-13C]-D-glucose injections. The main advantage of only labeling C3 and C4 positions is the absence of 13C-13C coupling in all downstream metabolic products after glucose is split into 3-carbon intermediates by aldolase. This unique method allows direct detection of glycolysis in vivo in the healthy brain in a noninvasive manner.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Glucosa/metabolismo , Animales , Glucólisis , Ácido Láctico/metabolismo , Ratones , Ácido Pirúvico/metabolismo
13.
J Magn Reson ; 272: 141-146, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27693965

RESUMEN

Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.

14.
Angew Chem Int Ed Engl ; 55(43): 13567-13570, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27666128

RESUMEN

Incomplete knowledge of the longitudinal relaxation time constant (T1 ) leads to incorrect assumptions in quantitative kinetic models of cellular systems, studied by hyperpolarized real-time NMR. Using an assay that measures the intracellular signal of small carboxylic acids in living cells, the intracellular T1 of the carboxylic acid moiety of acetate, keto-isocaproate, pyruvate, and butyrate was determined. The intracellular T1 is shown to be up to four-fold shorter than the extracellular T1 . Such a large difference in T1 values between the inside and the outside of the cell has significant influence on the quantification of intracellular metabolic activity. It is expected that the significantly shorter T1 value of the carboxylic moieties inside cells is a result of macromolecular crowding. An artificial cytosol has been prepared and applied to predict the T1 of other carboxylic acids. We demonstrate the value of this prediction tool.


Asunto(s)
Ácidos Carboxílicos/análisis , Saccharomyces cerevisiae/química , Ácidos Carboxílicos/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
15.
Phys Chem Chem Phys ; 18(18): 12409-13, 2016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27093499

RESUMEN

[1-(13)C]pyruvate is the most widely used hyperpolarized metabolic magnetic resonance imaging agent. Using a custom-built 7.0 T polarizer operating at 1.0 K and trityl radical-doped [1-(13)C]pyruvic acid, unextrapolated solution-state (13)C polarization greater than 60% was measured after dissolution and rapid transfer to a spectrometer magnet, demonstrating the signal enhancement attainable using optimized hardware. Slower rates of polarization under these conditions can be largely overcome with higher radical concentrations.


Asunto(s)
Ácido Pirúvico/química , Isótopos de Carbono/química , Gadolinio/química , Espectroscopía de Resonancia Magnética , Microondas
17.
Int J Cancer ; 136(4): E117-26, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25156718

RESUMEN

An increased prevalence of liver diseases such as hepatitis C and nonalcoholic fatty liver results in an augmented incidence of the most common form of liver cancer, hepatocellular carcinoma (HCC). HCC is most often found in the cirrhotic liver and it can therefore be challenging to rely on anatomical information alone when diagnosing HCC. Valuable information on specific cellular metabolism can be obtained with high sensitivity thanks to an emerging magnetic resonance (MR) technique that uses 13C labeled hyperpolarized molecules. Our interest was to explore potential new high contrast metabolic markers of HCC using hyperpolarized 13C-MR. This work led to the identification of a class of substrates, low molecular weight ethyl-esters, which showed high specificity for carboxyl esterases and proved in many cases to possess good properties for signal enhancement. In particular, hyperpolarized [1,3-13C2 ]ethyl acetoacetate (EAA) was shown to provide a metabolic fingerprint of HCC. Using this substrate a liver cancer implanted in rats was diagnosed as a consequence of an ∼4 times higher metabolic substrate-to-product ratio than in the surrounding healthy tissue, (p=0.009). Unregulated cellular uptake as well as cosubstrate independent enzymatic conversion of EAA, made this substrate highly useful as a hyperpolarized 13C-MR marker. This could be appreciated by the signal-to-noise (SNR) obtained from EAA, which was comparable to the SNR reported in a literature liver cancer study with state-of-the-art hyperpolarized substrate, [1-13C]pyruvate. Also, the contrast-to-noise (CNR) in the EAA based metabolic ratio images was significantly improved compared with the CNR in equivalent images reported using [1-13C]pyruvate.


Asunto(s)
Acetoacetatos , Medios de Contraste , Neoplasias Hepáticas Experimentales/diagnóstico , Acetoacetatos/farmacocinética , Animales , Biomarcadores de Tumor , Carboxilesterasa/metabolismo , Medios de Contraste/farmacocinética , Células Hep G2 , Humanos , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Trasplante de Neoplasias , Ratas Endogámicas BUF , Relación Señal-Ruido
18.
Sensors (Basel) ; 14(1): 1576-97, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24441771

RESUMEN

During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.


Asunto(s)
Bioensayo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Sondas Moleculares/química , Humanos , Iones/química , Cinética
19.
J Biol Chem ; 289(4): 2344-52, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24302737

RESUMEN

Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD(+)]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD(+)]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD(+)]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD(+)]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD(+)]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.


Asunto(s)
Neoplasias de la Mama/metabolismo , Glucosa/metabolismo , Glucólisis , NAD/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Ácido Láctico/metabolismo , Masculino , Neoplasias de la Próstata/patología , Ácido Pirúvico/metabolismo
20.
Chemistry ; 19(40): 13288-93, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24019026

RESUMEN

Uptake and upshot in vivo: Straightforward methods that permit the real-time observation of organic acid influx, intracellular acidification, and concomitant effects on cellular-reaction networks are crucial for improved bioprocess monitoring and control. Herein, dynamic nuclear polarization (DNP) NMR is used to observe acetate influx, ensuing intracellular acidification and the metabolic consequences on alcoholic fermentation and glycolysis in living cells.


Asunto(s)
Ácido Acético/química , Ácido Acético/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Levaduras/química , Levaduras/metabolismo , Fermentación , Glucólisis , Espectroscopía de Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA