RESUMEN
A charge detector has been constructed and mounted inside the vacuum housing of a commercial mass spectrometer (Micromass-Waters Quattro I, Waters Corp., Manchester, UK). The in-house built single-pass charge detector is composed of a designed, complete electronics system that includes a low-noise charge amplifier. Communication to the data acquisition system was enabled, and analog and digital filters were devised, followed by their tuning and programming. Data treatment scripts for data analysis and plotting were automated, and the assembled system was calibrated and tested. The instrument has an acquisition speed of â¼200 detection events/s, and it permits detection down to â¼510 charges (= three times RMS noise) for a single measured particle. The charge detector was employed to determine the oligomer distribution of a megadalton polymer, polyethylene glycol (PEG). The PEG size distribution exhibits a maximum at â¼ m/z 5910 with the oligomeric population mass distribution peaking near 4.45 MDa. In studies of methanol droplet dynamics, "charge vs time-of-flight" plots enabled clear visualization of the zone near the Rayleigh limit to droplet charging. The highest population of methanol droplets near the Rayleigh limit carried 5000-7000 charges. This corresponds to droplet weights of 10-20 GDa, with the high-end tail extending above 70 GDa. This visualization of the most highly charged droplets (that bear numbers of charges near those defined by the Rayleigh equation) was exploited as a calibration aid for our charge detector, which lacks a means of precisely defining ion energy. A maximum m/z error of -12.3% was calculated for the method, i.e., less than the potential error in assigning the true level of charging of the most highly charged droplets relative to the Rayleigh limit. With these limitations in mind, the introduced method will provide a new means for aiding the calibration of m/z values in charge detectors.
RESUMEN
Formation of noncovalent complexes is one of the approaches to perform chiral analysis with mass spectrometry. Enantiomeric distinction of amino acids (AAs) based on the relative rate constants of competitive fragmentations of quaternary copper complexes is an efficient method for chiral differentiation. Here, we studied the complex [CuII,(Phe,PhG,Pro-H)]+ (m/z 493) under resonant collision-induced dissociation conditions while varying the activation time. The precursor ion can yield two main fragments through the loss of the non-natural AA phenylglycine (PhG): the expected product ion [CuII,(Phe,Pro-H)]+ (m/z 342) and the reduced product ion [CuI,(Phe,Pro)]+ (m/z 343). Enantioselective reduction describes the difference in relative abundance of these ions, which depends on the chirality of the precursor ion: the formation of the reduced ion m/z 343 is favored in homochiral complexes (DDD) compared to heterochiral complexes (such as LDD). Energy-resolved mass spectrometry data show that reduction, which arises from rearrangement, is favored at a low collision energy (CE) and long activation time (ActT), whereas direct cleavage preferentially occurs at a high CE and short ActT. These results were confirmed with kinetic modeling based on RRKM theory. For this modeling, it was necessary to set a pre-exponential factor as a reference, so that the E0 values obtained are relative values. Interestingly, these simulations showed that the critical energy E0 required to form the reduced ion is comparable in both homochiral and heterochiral complexes. However, the formation of product ion m/z 342 through direct cleavage is associated with a lower E0 in heterochiral complexes. Consequently, enantioselectivity would not be caused by enhanced reduction in homochiral complexes but rather by direct cleavage being favored in heterochiral complexes.
RESUMEN
(P,C)-cyclometalated Au(III) complexes have shown remarkable ability to catalyze the intermolecular hydroarylation of alkynes. Evidence of an outer-sphere mechanism has been provided in a previous study and is confirmed here by analysing the experimental data and DFT calculations. In this work, we propose evaluation of critical energies of dissociation of Au(III) complexes with different substrates via energy-resolved mass spectrometry (ERMS) experiments and kinetic modelling. The kinetic model is based on a multi-collisional approach. On the one hand, the classification confirms the mechanism previously proposed; on the other hand, it supports the collisional model and its application to particularly fragile adducts.
RESUMEN
In this work, we report on the synthesis of several organogold(III) complexes based on 4,4'-diterbutylbiphenyl (C^C) and 2,6-bis(4-terbutylphenyl)pyridine (C^N^C) ligands and bond with variously substituted pyridine ligands (pyrR). Altogether, 33 complexes have been prepared and studied with mass spectrometry using higher-energy collision dissociation (HCD) in an Orbitrap mass spectrometer. A complete methodology including the kinetic modeling of the dissociation process based on the Rice-Ramsperger-Kassel-Marcus (RRKM) statistical method is proposed to obtain critical energies E0 of the pyrR loss for all complexes. The capacity of these E0 values to describe the pyridine ligand effect is further explored, at the same time as more classical descriptors such as 1H pyridinic NMR shift variation upon coordination and Au-NpyrR bond length measured by X-ray diffraction. An extensive theoretical work, including density functional theory (DFT) and domain-based local pair natural orbital coupled-cluster theory (DLPNO-CCSD(T)) methods, is also carried out to provide bond-dissociation energies, which are compared to experimental results. Results show that dissociation energy outperforms other descriptors, in particular to describe ligand effects over a large electronic effect range as seen by confronting the results to the pyrR pKa values. Further insights into the Au-NpyrR bond are obtained through an energy decomposition analysis (EDA) study, which confirms the isolobal character of Au+ with H+. Finally, the correlation between the lability of the pyridine ligands toward the catalytic efficiency of the complexes could be demonstrated in an intramolecular hydroarylation reaction of alkyne. The results were rationalized considering both pre-catalyst activation and catalyst reactivity. This study establishes the possibility of correlating dissociation energy, which is a gas-phase descriptor, with condensed-phase parameters such as catalysis efficiency. It therefore holds great potential for inorganic and organometallic chemistry by opening a convenient and easy way to evaluate the electronic influence of a ligand toward a metallic center.
RESUMEN
Over the last 5-10 years, gold(III) catalysis has developed rapidly. It often shows complementary if not unique features compared to gold(I) catalysis. While recent work has enabled major synthetic progress in terms of scope and efficiency, very little is yet known about the mechanism of Au(III)-catalyzed transformations and the relevant key intermediates have rarely been authenticated. Here, we report a detailed experimental/computational mechanistic study of the recently reported intermolecular hydroarylation of alkynes catalyzed by (P,C)-cyclometalated Au(III) complexes. The cationic (P,C)Au(OAcF)+ complex (OAcF = OCOCF3) was authenticated by mass spectrometry (MS) in the gas phase and multi-nuclear NMR spectroscopy in solution at low temperatures. According to density functional theory (DFT) calculations, the OAcF moiety is κ2-coordinated to gold in the ground state, but the corresponding κ1-forms featuring a vacant coordination site sit only slightly higher in energy. Side-on coordination of the alkyne to Au(III) then promotes nucleophilic addition of the arene. The energy profiles for the reaction between trimethoxybenzene (TMB) and diphenylacetylene (DPA) were computed by DFT. The activation barrier is significantly lower for the outer-sphere pathway than for the alternative inner-sphere mechanism involving C-H activation of the arene followed by migratory insertion. The π-complex of DPA was characterized by MS. An unprecedented σ-arene Au(III) complex with TMB was also authenticated both in the gas phase and in solution. The cationic complexes [(P,C)Au(OAcF)]+ and [(P,C)Au(OAcF)(σ-TMB)]+ stand as active species and off-cycle resting state during catalysis, respectively. This study provides a rational basis for the further development of Au(III) catalysis based on π-activation.
Asunto(s)
Alquinos , Oro , Alquinos/química , Oro/química , Catálisis , CationesRESUMEN
Synthesis of host molecules that feature well-defined characteristics for molecular recognition of guest molecules is often a major aim of synthetic host-guest (H-G) chemistry. A key consideration in evaluating the selectivity of hosts and the affinities of guests is the measurement of binding energies of obtained H-G complexes. In contrast to nuclear magnetic resonance (NMR) or fluorescence measurements that are capable of measuring binding strengths in solution, mass spectrometry offers the opportunity to measure gas-phase binding energies. Presented in this article is a higher energy collision dissociation (HCD) approach for determining critical energies of dissociation of H-G complexes. Experiments were performed on electrospray ionization (ESI)-generated H-G pairs in an LTQ-XL/Orbitrap hybrid instrument. The presented HCD approach requires preliminary calibration of the internal energy distribution of generated ions that was achieved by the use of activation parameters that were known from previous low-energy collision-induced dissociation (low-energy CID) experiments. Internal energy deposition was modeled based on a truncated Maxwell-Boltzmann distribution and characteristic temperature (Tchar ). Using this method, critical energies of dissociation were determined for 10 H-G biologically relevant complexes of the heteroditopic hemicryptophane cage host (Host). Obtained results are compared with those found previously by low-energy CID. The use of this HCD technique is relatively straightforward, although its implementation does require knowledge (or a presumption) about the Arrhenius pre-exponential factor of the complexes to obtain their critical energies of dissociation.
Asunto(s)
Benchmarking , Iones/química , Espectrometría de Masas/métodos , TermodinámicaRESUMEN
A library of eleven cationic gold(III) complexes of the general formula [(C C)Au(N N)]+ when C C is either biphenyl or 4,4'-ditertbutyldiphenyl and N N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C N C)Au(NHC)]+ structure. This makes the [(C C)Au(N N)]+ complexes a new class of organogold compounds with an original mode of action.
Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Oro/farmacología , Humanos , Compuestos Orgánicos de Oro/farmacología , Reductasa de Tiorredoxina-DisulfuroRESUMEN
In organometallic chemistry, especially in the catalysis area, accessing the finest tuning of a catalytic reaction pathway requires a detailed knowledge of the steric and electronic influences of the ligands bound to the metal center. Usually, the M-L bond between a ligand and metal is depicted by the Dewar-Chatt-Duncanson model involving two opposite interactions, σ-donor and π-acceptor effects of the ligand. The experimental evaluation of these effects is essential and complementary to in-depth theoretical approaches that are able to provide a detailed description of the M-L bond. In this work, we present a study of LMo(CO)5 complexes with L being various tertiary phosphine ligands by means of mass-selected high-resolution photoelectron spectroscopy (PES) performed with synchrotron radiation, DFT, and energy decomposition analyses (EDA) combined with the natural orbitals for chemical valence (NOCV) analysis. These methods enable a separated access of the σ-donor and π-acceptor effects of ligands by probing either the electronic configuration of the complex (PES) or the interaction of the ligand with the metal (EDA). Three series of PR3 ligands with various electronic influences are investigated: the strong donating alkyl substituents (PMe3, PEt3, and PiPr3), the intermediate PPhxMe(3-x) (x = 0-3) set, and the PPhxPyrl(3-x) set (x = 0-3 with Pyrl being the strong electron withdrawing pyrrolyl group C4H4N). For each complex, their adiabatic and vertical ionization energies (IEs) could be determined with a 0.03 eV precision. Experiment and theory show an excellent agreement, either for the IE determination or electronic effect analysis. The ability to interpret the spectra is shown to depend on the character of the ligand. "Innocent" ligands provide the spectra that are the most straightforward to analyze, whereas the "non-innocent" ligands (which are ionized prior to the metal center) render the analysis more difficult due to an increased number of molecular orbitals in the energy range considered. A very good linear correlation is finally found between the measured adiabatic ionization energies and the interaction energy term obtained by EDA for each of these two types of ligands, which opens interesting perspective for the prediction of ligand characters.
RESUMEN
Tandem mass spectrometry involves isolation of specific precursor ions and their subsequent excitation through collision-, photon-, or electron-mediated activation techniques in order to induce unimolecular dissociation leading to formation of fragment ions. These powerful ion activation techniques, typically used in between mass selection and mass analysis steps for structural elucidation, have not only found a wide variety of analytical applications in chemistry and biology, but they have also been used to study the fundamental properties of ions in the gas phase. In this tutorial paper, a brief overview is presented of the theories that have been used to describe the activation of ions and their subsequent unimolecular dissociation. Acronyms of the presented techniques include CID, PQD, HCD, SORI, SID, BIRD, IRMPD, UVPD, EPD, ECD, EDD, ETD, and EID. The fundamental principles of these techniques are discussed in the context of their implementation on ultra-high resolution tandem mass spectrometers. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
RESUMEN
A low-energy collision induced dissociation (CID) (low-energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas-phase binding energies of host-guest (H-G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre-exponential factors were evaluated for more than 10 H-G complexes via the use of low-energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s-1 . This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low-energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (-OPO3 2- ) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (-SO3 - ) group; however, the latter ones make stronger bonds than those with a carboxylate (-CO2 - ) group. In addition, it was observed that the presence of trimethylammonium (-N(CH3 )3 + ) or phenyl groups in the guest's structure improves the strength of H-G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H-G chemistry studies where comparison of bond dissociation energies is of paramount importance.
RESUMEN
Proline proton affinity PA(Pro) was previously measured by extended kinetic methods with several amines as reference bases using a triple quadrupole mass spectrometer ( J Mass Spectrom 2005; 40: 1300). The measured value of 947.5 ± 5 kJ.mol-1 differs by more than 10 kJ.mol-1 from previous reported experimental or calculated values. This difference may be explained in part by the existence of relatively large entropy difference between the two dissociation channels (ΔΔSavg = 31 ± 10 J.mol-1.K-1) and by the inaccuracy of the amines proton affinity used as reference bases. In the present work, these experimental measurements were reinvestigated by RRKM modeling using MassKinetics software. From this modeling, a new PA value of 944.5 ± 5 kJ.mol-1 and a ΔΔSavg(600K) value of 33 ± 10 J.mol-1.K-1 are determined. However, the difference between experiment and recent theoretical calculations remains large (10 kJ.mol-1). These RRKM simulations allow also accessing to the effective temperature parameter (T eff) and to discuss the meaning of this term. As previously reported, T eff mainly depends on the internal energy and on the decomposition time as well. It also depends on the critical energies and on the transition state. Considering the entrance of the collision cell as a new ion source, T eff is finally shown to be close to a characteristic temperature (T char).
RESUMEN
In advancing host-guest (H-G) chemistry, considerable effort has been spent to synthesize host molecules with specific and well-defined molecular recognition characteristics including selectivity and adjustable affinity. An important step in the process is the characterization of binding strengths of the H-G complexes that is typically performed in solution using NMR or fluorescence. Here, we present a mass spectrometry-based multimodal approach to obtain critical energies of dissociation for two hemicryptophane cages with three biologically relevant guest molecules. A combination of blackbody infrared radiative dissociation (BIRD) and high-pressure collision-induced dissociation (high-pressure CID), along with RRKM modeling, was employed for this purpose. For the two tested hemicryptophane hosts, the cage containing naphthyl linkages exhibited stronger interactions than the cage bearing phenyl linkages. For both cages, the order of guest stability is choline > acetylcholine > betaine. The information obtained by these types of mass spectrometric studies can provide new insight into the structural features that most influence the stability of H-G pairs, thereby providing guidance for future syntheses. Graphical Abstract.
RESUMEN
Ligand electronic effects in gold(i) chemistry have been evaluated by means of the experimental determination of M-CO bond dissociation energies for 16 [L-Au-CO]+ complexes, bearing L ligands widely used in gold catalysis. Energy-resolved analyses have been made using tandem mass spectrometry with collision-induced dissociation. Coupled with DFT calculations, this approach enables the quantification of ligand effects based on the LAu-CO bond strength. A further energy decomposition analysis gives access to detailed insights into this bond's characteristics. Whereas small differences are observed between phosphine- and phosphite-containing gold complexes, carbene ligands are shown to stabilize the gold-carbonyl bond much more efficiently.
RESUMEN
The dissolution mechanism of oligosaccharides in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl), a solvent used for cellulose dissolution, and the capabilities of low-energy collision-induced dissociation (low-energy CID), collision-induced dissociation (CID), and higher energy collision dissociation (HCD) for structural analysis of carbohydrates were investigated. Comparing the spectra obtained using 3 techniques shows that, generally, when working with monolithiated sugars, CID spectra provide more structurally informative fragments, and glycosidic bond cleavage is the main pathway. However, when working with dilithiated sugars, HCD spectra can be more informative providing predominately cross-ring cleavage fragments. This is because HCD is a nonresonant activation technique, and it allows a higher amount of energy to be deposited in a short time, giving access to more endothermic decomposition pathways as well as consecutive fragmentations. The difference in preferred dissociation pathways of monolithiated and dilithiated sugars indicates that the presence of the second lithium strongly influences the relative rate constants for cross-ring cleavages vs glycosidic bond cleavages, and disfavors the latter. Regarding the dissolution mechanism of sugars in DMAc/LiCl, CID and HCD experiments on dilithiated and trilithiated sugars reveal that intensities of product ions containing 2 Li+ or 3 Li+ , respectively, are higher than those bearing only 1 Li+ . In addition, comparing the fragmentation spectra (both HCD and CID) of LiCl-adducted lithiated sugar and NaCl-adducted sodiated sugar shows that while, in the latter case, loss of NaCl is dominant, in the former case, loss of HCl occurs preferentially. The compiled evidence implies that there is a strong and direct interaction between lithium and the saccharide during the dissolution process in the DMAc/LiCl solvent system.
RESUMEN
Supported by mass spectrometry experiments, DFT computations indicate that the lithium amide of a 3-aminopyrrolidine (lithium benzhydryl(1-benzylpyrrolidin-3-yl)amide, 1-Li) is protected, up to a certain limit, against hydrolysis when it is aggregated with a strongly polar partner such as LiCl, LiBr, or MeLi.
RESUMEN
Redox-labeled nucleotides are of increasing interest for the fabrication of next generation molecular tools and should meet requirements of being thermally stable, sensitive, and compatible with polymerase-mediated incorporation while also being electrochemically discriminable. The synthesis and characterization of Keggin and Dawson polyoxometalate-deoxynucleotide (POM-dNTP) bioconjugates linked through 7-deaza-modified purines is described. The modified POM-dNTPs were used for polymerase-based amplification of a DNA sequence specific for Yersinia pestis and the amplified DNA detected using an electrochemical DNA sensor. This highlights the potential of polyoxometalates as thermally stable, sensitive and polymerase-compatible redox labels for exploitation in bioanalytical applications.
Asunto(s)
ADN Bacteriano/química , Técnicas Electroquímicas , Nucleótidos/química , Compuestos de Tungsteno/química , Yersinia pestis/genética , ADN Bacteriano/metabolismo , Electrodos , Electroforesis en Gel de Campo Pulsado , Oro/química , Reacción en Cadena de la Polimerasa , Yersinia pestis/aislamiento & purificaciónRESUMEN
Negatively charge-tagged N-heterocyclic carbenes have been formed in solution via deprotonation of imidazolium ions bearing acid side groups and transferred to the gas phase via ESI(-)-MS. The structure of the putative and apparently stable gaseous carbenes formed in such conditions were then probed via reactions with carbon dioxide using a triple quadrupole mass spectrometer particularly optimized for ion/molecule reactions of ESI-generated ions. Complete conversion to imidazolium carboxylates was achieved, which seems to demonstrate the efficiency of the transfer, the gas-phase stability, and the long-lived nature of these unprecedented charge-tagged carbenes and their predominance in the ionic population. Comprehensive studies on the intrinsic reactivity of N-heterocyclic carbenes with silent charge tags are therefore possible. Graphical Abstract á .
RESUMEN
The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy.
Asunto(s)
Alquilantes/farmacología , Metilnitronitrosoguanidina/farmacología , Factor de Transcripción STAT1/deficiencia , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa de Punto de Control 2/metabolismo , Citoprotección/efectos de los fármacos , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Histonas/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Factor de Transcripción STAT1/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Investigations based on NMR spectroscopy, mass spectrometry, and DFT calculations shed light on the metallic species generated in the rhodium-catalyzed asymmetric [2+2+2] cycloaddition reaction between diynes and isocyanates with the chiral phosphate TRIP. The catalytic mixture comprising [{Rh(cod)Cl}2 ], 1,4-diphenylphosphinobutane (dppb), and Ag(S)-TRIP actually gives rise to two species, both having an effect on the stereoselectivity. One is a rhodium(I) complex in which TRIP is a weakly coordinating counterion, whereas the other is a bimetallic Rh/Ag complex in which TRIP is a strongly coordinating X-type ligand.
RESUMEN
The bioconjugation of polyoxometalates (POMs), which are inorganic metal oxido clusters, to DNA strands to obtain functional labeled DNA primers and their potential use in electrochemical detection have been investigated. Activated monooxoacylated polyoxotungstates [SiW11 O39 {Sn(CH2 )2 CO}](8-) and [P2 W17 O61 {Sn(CH2 )2 CO}](6-) have been used to link to a 5'-NH2 terminated 21-mer DNA forward primer through amide coupling. The functionalized primer was characterized by using a battery of techniques, including electrophoresis, mass spectrometry, as well as IR and Raman spectroscopy. The functionality of the POM-labeled primers was demonstrated through hybridization with a surface-immobilized probe. Finally, the labeled primers were successfully used in the polymerase chain reaction (PCR) and the PCR products were characterized by using electrophoresis.