Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Transl Med ; 16(750): eadk7640, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838132

RESUMEN

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.


Asunto(s)
Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores Quiméricos de Antígenos , Sulfonamidas , Humanos , Animales , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Linfocitos T/metabolismo , Linfocitos T/inmunología , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Proteína bcl-X/metabolismo , Fragmentos de Péptidos , Proteínas Proto-Oncogénicas
2.
Blood Cancer Discov ; 5(3): 180-201, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442309

RESUMEN

In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML. We derived pharmacologic sensitivity for 22 AML PDX models using dynamic BH3 profiling (DBP), together with genomics and transcriptomics. Using in vivo acquired resistant PDXs, we found that resistance to unrelated, narrowly targeted agents in distinct PDXs was accompanied by broad resistance to drugs with disparate mechanisms. Moreover, baseline mitochondrial apoptotic priming was consistently reduced regardless of the class of drug-inducing selection. By applying DBP, we identified drugs showing effective in vivo activity in resistant models. This study implies evasion of apoptosis drives drug resistance and demonstrates the feasibility of the DBP approach to identify active drugs for patients with relapsed AML. SIGNIFICANCE: Acquired resistance to targeted therapy remains challenging in AML. We found that reduction in mitochondrial priming and common transcriptomic signatures was a conserved mechanism of acquired resistance across different drug classes in vivo. Drugs active in vivo can be identified even in the multidrug resistant state by DBP.


Asunto(s)
Apoptosis , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Humanos , Apoptosis/efectos de los fármacos , Animales , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Resistencia a Múltiples Medicamentos/genética , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Células Precursoras de Granulocitos/efectos de los fármacos , Células Precursoras de Granulocitos/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Blood Cancer Discov ; 5(2): 81-82, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331415

RESUMEN

SUMMARY: In ancient Greek mythology, sirens were creatures of stunning beauty whose mystical songs led sailors to sail their boats onto hidden rocks and into total destruction. In this issue, Mason-Osann and colleagues present data in the context of acute myelogenous leukemia to suggest that while synergy may show initial attractions in drug combinations, it may carry with it hazards previously unforeseen. See related article by Mason-Osann et al., p. 95 (1).


Asunto(s)
Personal Militar , Deportes , Humanos , Animales , Confusión , Mitología , Urodelos
4.
Blood Adv ; 8(4): 978-990, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38197938

RESUMEN

ABSTRACT: We conducted a phase 1 trial assessing safety and efficacy of prophylactic maintenance therapy with venetoclax and azacitidine (Ven/Aza) for patients with high-risk myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML) undergoing reduced intensity allogeneic stem cell transplantation (allo-SCT) after Ven and fludarabine/busulfan conditioning (Ven/FluBu2 allo-SCT) with tacrolimus and methotrexate as graft-versus-host disease (GVHD) prophylaxis. Among 27 patients who underwent Ven/FluBu2 allo-SCT (55.6% with prior Ven exposure, and 96% with positive molecular measurable residual disease), 22 received maintenance therapy with Aza 36 mg/m2 intravenously on days 1 to 5, and Ven 400 mg by mouth on days 1 to 14 per assigned dose schedule/level (42-day cycles × 8, or 28-day cycles × 12). During maintenance, the most common grade 3-4 adverse events were leukopenia, neutropenia, and thrombocytopenia, which were transient and manageable. Infections were uncommon (n = 4, all grade 1-2). The 1-year and 2-year moderate/severe chronic GVHD rates were 4% (95% confidence interval [CI], 0.3%-18%) and 22% (95% CI, 9%-40%), respectively. After a median follow-up of 25 months among survivors, the median overall survival (OS) was not reached. Among the 22 patients who received Ven/Aza maintenance, the 2-year OS, progression-free survival, nonrelapse mortality, and cumulative incidence of relapse rates were 67% (95% CI, 43%-83%), 59% (95% CI, 36%-76%), 0%, and 41% (95% CI, 20%-61%), respectively. Immune monitoring demonstrated no significant impact on T-cell expansion but identified reduced B-cell expansion compared with controls. This study demonstrates prophylactic Ven/Aza maintenance can be safely administered for patients with high-risk MDS/AML, but a randomized study is required to properly assess any potential benefit. This trial was registered at www.clinicaltrials.gov as #NCT03613532.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Enfermedad Injerto contra Huésped , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Acondicionamiento Pretrasplante , Trasplante Homólogo , Azacitidina/uso terapéutico
6.
Cell Rep ; 42(12): 113564, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100350

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo
7.
Blood Adv ; 7(19): 5877-5889, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428863

RESUMEN

The importance of the stromal microenvironment in chronic lymphocytic leukemia (CLL) pathogenesis and drug resistance is well established. Despite recent advances in CLL therapy, identifying novel ways to disrupt interactions between CLL and its microenvironment may identify new combination partners for the drugs currently in use. To understand the role of microenvironmental factors on primary CLL cells, we took advantage of an observation that conditioned media (CM) collected from stroma was protective of CLL cells from spontaneous cell death ex vivo. The cytokine in the CM-dependent cells that most supports CLL survival in short-term ex vivo culture was CCL2. Pretreatment of CLL cells with anti-CCL2 antibody enhanced venetoclax-mediated killing. Surprisingly, we found a group of CLL samples (9/23 cases) that are less likely to undergo cell death in the absence of CM support. Functional studies revealed that CM-independent (CMI) CLL cells are less sensitive to apoptosis than conventional stroma-dependent CLL. In addition, a majority of the CMI CLL samples (80%) harbored unmutated immunoglobulin heavy-chain variable (IGHV) region. Bulk-RNA sequence analysis revealed upregulation of the focal adhesion and RAS signaling pathways in this group, along with expression of fms-like tyrosine kinase 3 (FLT3) and CD135. Treatment with FLT3 inhibitors caused a significant reduction in cell viability among CMI samples. In summary, we were able to discriminate and target 2 biologically distinct subgroups of CLL based on CM dependence with distinct microenvironmental vulnerabilities.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Medios de Cultivo Condicionados/farmacología , Tirosina Quinasa 3 Similar a fms/uso terapéutico , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/uso terapéutico , Transducción de Señal , Microambiente Tumoral
8.
Sci Adv ; 9(25): eadg4128, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352344

RESUMEN

A potential cause of cancer relapse is pretreatment chemoresistant subpopulations. Identifying targetable features of subpopulations that are poorly primed for therapy-induced cell death may improve cancer therapy. Here, we develop and validate real-time BH3 profiling, a live and functional single-cell measurement of pretreatment apoptotic sensitivity that occurs upstream of apoptotic protease activation. On the same single cells, we perform cyclic immunofluorescence, which enables multiplexed immunofluorescence of more than 30 proteins on the same cell. Using cultured cells and rapid ex vivo cultures of colon cancer patient-derived xenograft (PDX) models, we identify Bak as a univariate correlate of apoptotic priming, find that poorly primed subpopulations can correspond to specific stages of the cell cycle, and, in some PDX models, identify increased expression of Bcl-XL, Mcl-1, or Her2 in subpopulations that are poorly primed for apoptosis. Last, we generate and validate mathematical models of single-cell priming that describe how targetable proteins contribute to apoptotic priming.


Asunto(s)
Apoptosis , Neoplasias , Neoplasias/metabolismo , Neoplasias/patología , Proteómica , Humanos , Análisis de la Célula Individual , Línea Celular Tumoral
9.
Nat Commun ; 14(1): 2897, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210412

RESUMEN

Malignant pleural mesothelioma (MPM) has relatively ineffective first/second-line therapy for advanced disease and only 18% five-year survival for early disease. Drug-induced mitochondrial priming measured by dynamic BH3 profiling identifies efficacious drugs in multiple disease settings. We use high throughput dynamic BH3 profiling (HTDBP) to identify drug combinations that prime primary MPM cells derived from patient tumors, which also prime patient derived xenograft (PDX) models. A navitoclax (BCL-xL/BCL-2/BCL-w antagonist) and AZD8055 (mTORC1/2 inhibitor) combination demonstrates efficacy in vivo in an MPM PDX model, validating HTDBP as an approach to identify efficacious drug combinations. Mechanistic investigation reveals AZD8055 treatment decreases MCL-1 protein levels, increases BIM protein levels, and increases MPM mitochondrial dependence on BCL-xL, which is exploited by navitoclax. Navitoclax treatment increases dependency on MCL-1 and increases BIM protein levels. These findings demonstrate that HTDBP can be used as a functional precision medicine tool to rationally construct combination drug regimens in MPM and other cancers.


Asunto(s)
Mesotelioma Maligno , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 11 Similar a Bcl2/genética , Apoptosis , Línea Celular Tumoral , Combinación de Medicamentos , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
10.
Cell Death Dis ; 14(4): 267, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055388

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is an FDA-approved treatment for several hematologic malignancies, yet not all patients respond to this treatment. While some resistance mechanisms have been identified, cell death pathways in target cancer cells remain underexplored. Impairing mitochondrial apoptosis via knockout of Bak and Bax, forced Bcl-2 and Bcl-XL expression, or caspase inhibition protected several tumor models from CAR T killing. However, impairing mitochondrial apoptosis in two liquid tumor cell lines did not protect target cells from CAR T killing. We found that whether a cell was Type I or Type II in response to death ligands explained the divergence of these results, so that mitochondrial apoptosis was dispensable for CART killing of cells that were Type I but not Type II. This suggests that the apoptotic signaling induced by CAR T cells bears important similarities to that induced by drugs. Combinations of drug and CAR T therapies will therefore require tailoring to the specific cell death pathways activated by CAR T cells in different types of cancer cells.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Apoptosis , Caspasas/metabolismo , Línea Celular Tumoral , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Neoplasias/terapia
12.
Elife ; 112022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409067

RESUMEN

The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here, we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.


Cancer cells have often lost genetic sequences that control when and how cell division takes place. Deleting these genes, however, is not an exact art, and neighboring sequences regularly get removed in the process. For example, the loss of the tumor suppressor gene PTEN, the second most deleted gene in cancer, frequently involves the removal of the nearby ATAD1 gene. While hundreds of thousands of human tumors completely lack ATAD1, individuals born without a functional version of this gene do not survive past early childhood. How can tumor cells cope without ATAD1 ­ and could these coping strategies become the target for new therapies? Winter et al. aimed to answer these questions by examining a variety of cancer cells lacking ATAD1 in the laboratory. Under normal circumstances, the enzyme that this gene codes for sits at the surface of mitochondria, the cellular compartments essential for energy production. There, it extracts any faulty, defective proteins that may otherwise cause havoc and endanger mitochondrial health. Experiments revealed that without ATAD1, cancer cells started to rely more heavily on an alternative mechanism to remove harmful proteins: the process centers on MARCH5, an enzyme which tags molecules that require removal so the cell can recycle them. Drugs that block the pathway involving MARCH5 already exist, but they have so far been employed to treat other types of tumors. Winter et al. showed that using these compounds led to the death of cancerous ATAD1-deficient cells, including in human tumors grown in mice. Overall, this work demonstrates that cancer cells which have lost ATAD1 become more vulnerable to disruptions in the protein removal pathway mediated by MARCH5, including via already existing drugs. If confirmed by further translational work, these findings could have important clinical impact given how frequently PTEN and ATAD1 are lost together in cancer.


Asunto(s)
Neoplasias , Complejo de la Endopetidasa Proteasomal , Humanos , Animales , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Mitocondrias/metabolismo , Neoplasias/genética
13.
Clin Cancer Res ; 28(24): 5455-5468, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36048524

RESUMEN

PURPOSE: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN: Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS: Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS: These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Antineoplásicos/farmacología , Apoptosis , Proteína 11 Similar a Bcl2 , Caspasas , Línea Celular Tumoral , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Rituximab/farmacología
14.
Cancer Cell ; 40(8): 804-806, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944499

RESUMEN

Morphology, immunophenotype, cytogenetics, and genomics have long dominated diagnostics in acute myelogenous leukemia (AML). In this issue of Cancer Cell, Bottomly et al. demonstrate that combining the above with transcriptomics and ex vivo drug testing of patient myeloblasts yields novel diagnostic and therapeutic insights with the potential for clinical translation.


Asunto(s)
Leucemia Mieloide Aguda , Medicina de Precisión , Humanos , Inmunofenotipificación , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
17.
Nat Cancer ; 3(5): 595-613, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35534777

RESUMEN

Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation. Furthermore, IKAROS displays an unexpected functional cooperativity and extensive chromatin co-occupancy with mixed lineage leukemia (MLL)1-MENIN and the regulator MEIS1 and an extensive hematopoietic transcriptional complex involving homeobox (HOX)A10, MEIS1 and IKAROS. This dependency could be therapeutically exploited by inducing IKAROS protein degradation with immunomodulatory imide drugs (IMiDs). Finally, we demonstrate that combined IKAROS degradation and MENIN inhibition effectively disrupts leukemogenic transcriptional networks, resulting in synergistic killing of leukemia cells and providing a paradigm for improved drug targeting of transcription and an opportunity for rapid clinical translation.


Asunto(s)
Leucemia Mieloide Aguda , Cromatina , Expresión Génica , Humanos , Factor de Transcripción Ikaros/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Factores de Transcripción/genética
18.
Cell ; 185(9): 1521-1538.e18, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35447071

RESUMEN

Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed. In the current study, we found that mitochondrial apoptosis (mtApoptosis) pathway is essential for efficient NK killing, especially at physiologically relevant effector-to-target ratios. Furthermore, NK cells can prime cancer cells for mtApoptosis and mitochondrial priming status affects cancer-cell susceptibility to NK-mediated killing. Interestingly, pre-activating NK cells confers on them resistance to BH3 mimetics. Combining BH3 mimetics with NK cells synergistically kills cancer cells in vitro and suppresses tumor growth in vivo. The ideal BH3 mimetic to use in such an approach can be predicted by BH3 profiling. We herein report a rational and precision strategy to augment NK-based immunotherapy, which may be adaptable to T cell-based immunotherapies as well.


Asunto(s)
Inmunoterapia , Células Asesinas Naturales , Neoplasias/terapia , Apoptosis , Neoplasias/patología
20.
Leukemia ; 36(6): 1499-1507, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35411095

RESUMEN

Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3. Mutant JAK3 directly repressed apoptosis in leukemia cells, because its inhibition with mechanistically distinct pharmacologic inhibitors resulted in reversal of mitochondrial apoptotic blockade. Inhibition of JAK3 led to loss of MEK, ERK and BCL2 phosphorylation, and BH3 profiling revealed that JAK3-mutant primary T-ALL patient samples were characterized by a dependence on BCL2. Treatment of JAK3-mutant T-ALL cells with the JAK3 inhibitor tofacitinib in combination with a spectrum of conventional chemotherapeutics revealed synergy with glucocorticoids, in vitro and in vivo. These findings thus provide key insights into the molecular genetics of mitochondrial apoptosis resistance in childhood T-ALL, and a compelling rationale for a clinical trial of JAK3 inhibitors in combination with glucocorticoids for patients with JAK3-mutant T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Apoptosis , Glucocorticoides , Humanos , Janus Quinasa 3/genética , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA