Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nucleic Acids Res ; 49(21): 12089-12105, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850138

RESUMEN

Antisense oligonucleotides are small pieces of modified DNA or RNA, which offer therapeutic potential for many diseases. We report on the synthesis of 7',5'-α-bc-DNA phosphoramidite building blocks, bearing the A, G, T and MeC nucleobases. Solid-phase synthesis was performed to construct five oligodeoxyribonucleotides containing modified thymidine residues, as well as five fully modified oligonucleotides. Incorporations of the modification inside natural duplexes resulted in strong destabilizing effects. However, fully modified strands formed very stable duplexes with parallel RNA complements. In its own series, 7',5'-α-bc-DNA formed duplexes with a surprising high thermal stability. CD spectroscopy and extensive molecular modeling indicated the adoption by the homo-duplex of a ladder-like structure, while hetero-duplexes with DNA or RNA still form helical structure. The biological properties of this new modification were investigated in animal models for Duchenne muscular dystrophy and spinal muscular atrophy, where exon splicing modulation can restore production of functional proteins. It was found that the 7',5'-α-bc-DNA scaffold confers a high biostability and a good exon splicing modulation activity in vitro and in vivo.


Asunto(s)
ADN/uso terapéutico , Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos , Animales , Línea Celular , Masculino , Ratones , Oligonucleótidos/química , Oligonucleótidos/uso terapéutico
2.
Bioorg Med Chem ; 28(11): 115487, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32284226

RESUMEN

The incorporation of nucleotides equipped with C-glycosidic aromatic nucleobases into DNA and RNA is an alluring strategy for a number of practical applications including fluorescent labelling of oligonucleotides, expansion of the genetic alphabet for the generation of aptamers and semi-synthetic organisms, or the modulation of excess electron transfer within DNA. However, the generation of C-nucleoside containing oligonucleotides relies mainly on solid-phase synthesis which is quite labor intensive and restricted to short sequences. Here, we explore the possibility of constructing biphenyl-modified DNA sequences using enzymatic synthesis. The presence of multiple biphenyl-units or biphenyl residues modified with electron donors and acceptors permits the incorporation of a single dBphMP nucleotide. Moreover, templates with multiple abasic sites enable the incorporation of up to two dBphMP nucleotides, while TdT-mediated tailing reactions produce single-stranded DNA oligonucleotides with four biphenyl residues appended at the 3'-end.


Asunto(s)
Compuestos de Bifenilo/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Oligonucleótidos/biosíntesis , Compuestos de Bifenilo/química , ADN/química , Humanos , Estructura Molecular , Oligonucleótidos/química
3.
Org Biomol Chem ; 17(35): 8083-8087, 2019 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-31460550

RESUMEN

A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.


Asunto(s)
Aptámeros de Nucleótidos/química , Arabinosa/análogos & derivados , Uridina Trifosfato/química , Arabinosa/química , Sitios de Unión , Conformación de Carbohidratos , ADN/química , ADN/genética
4.
Methods Mol Biol ; 1973: 1-13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016692

RESUMEN

Chemical modification of nucleic acids can be achieved by the enzymatic polymerization of modified nucleoside triphosphates (dN*TPs). This approach obviates some of the requirements and drawbacks imposed by the more traditional solid-phase synthesis of oligonucleotides. Here, we describe the protocol that is necessary to synthesize dN*TPs and evaluate their substrate acceptance by polymerases for their subsequent use in various applications including selection experiments to identify aptamers. The protocol is exemplified for a sugar-constrained nucleoside analog, 7',5'-bc-TTP.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , ADN/biosíntesis , Nucleótidos/química , Azúcares/química , ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Oligonucleótidos/química , Técnicas de Síntesis en Fase Sólida
5.
Nucleic Acids Res ; 47(9): 4872-4882, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916334

RESUMEN

Tc-DNA is a conformationally constrained oligonucleotide analogue which shows significant increase in thermal stability when hybridized with RNA, DNA or tc-DNA. Remarkably, recent studies revealed that tc-DNA antisense oligonucleotides (AO) hold great promise for the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. To date, no high-resolution structural data is available for fully modified tc-DNA duplexes and little is known about the origins of their enhanced thermal stability. Here, we report the structures of a fully modified tc-DNA oligonucleotide paired with either complementary RNA, DNA or tc-DNA. All three investigated duplexes maintain a right-handed helical structure with Watson-Crick base pairing and overall geometry intermediate between A- and B-type, but closer to A-type structures. All sugars of the tc-DNA and RNA residues adopt a North conformation whereas the DNA deoxyribose are found in a South-East-North conformation equilibrium. The conformation of the tc-DNA strand in the three determined structures is nearly identical and despite the different nature and local geometry of the complementary strand, the overall structures of the examined duplexes are very similar suggesting that the tc-DNA strand dominates the duplex structure.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Oligonucleótidos/química , ARN/química , Emparejamiento Base , Dicroismo Circular , ADN/genética , Desoxirribosa , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Hibridación de Ácido Nucleico , Oligonucleótidos/genética , ARN/genética , Termodinámica
6.
Beilstein J Org Chem ; 15: 79-88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30680042

RESUMEN

Here we present the synthesis, the biophysical properties, and the RNase H profile of 6'-difluorinated [4.3.0]bicyclo-DNA (6'-diF-bc4,3-DNA). The difluorinated thymidine phosphoramidite building block was synthesized starting from an already known gem-difluorinated tricyclic glycal. This tricyclic siloxydifluorocyclopropane was converted into the [4.3.0]bicyclic nucleoside via cyclopropane ring-opening through the addition of an electrophilic iodine during the nucleosidation step followed by reduction. The gem-difluorinated bicyclic nucleoside was then converted into the corresponding phosphoramidite building block which was incorporated into oligonucleotides. Thermal denaturation experiments of these oligonucleotides hybridized to complementary DNA or RNA disclosed a significant destabilization of both duplex types (ΔT m/mod = -1.6 to -5.5 °C). However, in the DNA/RNA hybrid the amount of destabilization could be reduced by multiple insertions of the modified unit. In addition, CD spectroscopy of the oligonucleotides hybridized to RNA showed a similar structure than the natural DNA/RNA duplex. Furthermore, since the structural investigation on the nucleoside level by X-ray crystallography and ab initio calculations pointed to a furanose conformation in the southern region, a RNase H cleavage assay was conducted. This experiment revealed that the oligonucleotide containing five modified units was able to elicit the RNase H-mediated cleavage of the complementary RNA strand.

7.
Beilstein J Org Chem ; 14: 3088-3097, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30643586

RESUMEN

Here we report on the synthesis, biophysical properties and molecular modeling of oligonucleotides containing unsaturated 6'-fluoro[4.3.0]bicyclo nucleotides (6'F-bc4,3-DNA). Two 6'F-bc4,3 phosphoramidite building blocks (T and C) were synthesized starting from a previously described [3.3.0]bicyclic sugar. The conversion of this sugar to a gem-difluorinated tricyclic intermediate via difluorocarbene addition followed either by a NIS-mediated or Vorbrüggen nucleosidation yielded in both cases the ß-tricyclic nucleoside as major anomer. Subsequent desilylation and cyclopropane ring opening of these tricyclic intermediates afforded the unsaturated 6'F-bc4,3 nucleosides. The successful incorporation of the corresponding phosphoramidite building blocks into oligonucleotides was achieved with tert-butyl hydroperoxide as oxidation agent. Thermal melting experiments of the modified duplexes disclosed a destabilizing effect versus DNA and RNA complements, but with a lesser degree of destabilization versus complementary DNA (ΔT m/mod = -1.5 to -3.7 °C). Molecular dynamics simulation on the nucleoside and oligonucleotide level revealed the preference of the C1'-exo/C2'-endo alignment of the furanose ring. Moreover, the simulation of duplexes with complementary RNA disclosed a DNA/RNA-type duplex structure suggesting that this modification might be a substrate for RNase H.

8.
J Am Soc Mass Spectrom ; 28(12): 2677-2685, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28932996

RESUMEN

Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/w or d/z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. Graphical Abstract.


Asunto(s)
Cationes/química , Citosina/química , ADN/química , Electrones , Secuencia de Bases , Transporte de Electrón , Radicales Libres/química , Espectrometría de Masas , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos/química , Protones
9.
Mol Ther Nucleic Acids ; 7: 81-89, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28624227

RESUMEN

Spinal muscular atrophy (SMA) is a recessive disease caused by mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), whose absence dramatically affects the survival of motor neurons. In humans, the severity of the disease is lessened by the presence of a gene copy, SMN2. SMN2 differs from SMN1 by a C-to-T transition in exon 7, which modifies pre-mRNA splicing and prevents successful SMN synthesis. Splice-switching approaches using antisense oligonucleotides (AONs) have already been shown to correct this SMN2 gene transition, providing a therapeutic avenue for SMA. However, AON administration to the CNS presents additional hurdles. In this study, we show that systemic delivery of tricyclo-DNA (tcDNA) AONs in a type III SMA mouse augments retention of exon 7 in SMN2 mRNA both in peripheral organs and the CNS. Mild type III SMA mice were selected as opposed to the severe type I model in order to test tcDNA efficacy and their ability to enter the CNS after maturation of the blood brain barrier (BBB). Furthermore, subcutaneous treatment significantly improved the necrosis phenotype and respiratory function. In summary, our data support that tcDNA oligomers effectively cross the blood-brain barrier and offer a promising systemic alternative for treating SMA.

10.
Chemistry ; 23(43): 10310-10318, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28477335

RESUMEN

We describe the synthesis, thermal stability, structural and RNase H activation properties of 2'ß-fluoro-tricyclo nucleic acids (2'F-tc-ANA). Three 2'F-tc-ANA nucleosides (T, 5Me C and A) were synthesized starting from a previously described fluorinated tricyclo sugar intermediate. NMR analysis and quantum mechanical calculations indicate that 2'F-tc-ANA nucleosides prefer sugar conformations in the East and South regions of the pseudorotational cycle. UV-melting experiments revealed that non-consecutive insertions of 2'F-tc-ANA units in DNA reduce the affinity to DNA and RNA complements. However, an oligonucleotide with five contiguous 2'F-tc-ANA-T insertions exhibits increased affinity to complementary RNA. Moreover, a fully modified 10-mer 2'F-tc-ANA oligonucleotide paired to both DNA (+1.6 °C/mod) and RNA (+2.5 °C/mod) with significantly higher affinity compared to corresponding unmodified DNA, and similar affinity compared to corresponding tc-DNA. In addition, CD spectroscopy and molecular dynamics simulations indicate that the conformation of the 2'F-tc-ANA/RNA duplex is similar to that of a DNA/RNA duplex. Moreover, in some sequence contexts, 2'F-tc-ANA promotes RNase H-mediated cleavage of a complementary RNA strand. Taken together, 2'F-tc-ANA represents a nucleic acid analogue that offers the advantage of high RNA affinity while maintaining the ability to activate RNase H, and can be considered a prospective candidate for gene silencing applications.


Asunto(s)
Ácidos Nucleicos/química , Oligonucleótidos/química , Ribonucleasa H/química , Secuencia de Bases , Conformación de Carbohidratos , ADN/química , Activación Enzimática , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleósidos/química , Oligonucleótidos/síntesis química , Transición de Fase , Teoría Cuántica , ARN/química , Temperatura
11.
Chem Asian J ; 12(12): 1347-1352, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28371464

RESUMEN

The selection of artificial genetic polymers with tailor-made properties for their application in synthetic biology requires the exploration of new nucleosidic scaffolds that can be used in selection experiments. Herein, we describe the synthesis of a bicyclo-DNA triphosphate (i.e., 7',5'-bc-TTP) and show its potential to serve for the generation of new xenonucleic acids (XNAs) based on this scaffold. 7',5'-bc-TTP is a good substrate for Therminator DNA polymerase, and up to seven modified units can be incorporated into a growing DNA chain. In addition, this scaffold sustains XNA-dependent DNA synthesis and potentially also XNA-dependent XNA synthesis. However, DNA-dependent XNA synthesis on longer templates is hampered by competitive misincorporation of deoxyadenosine triphosphate (dATP) caused by the slow rate of incorporation of 7',5'-bc-TTP.


Asunto(s)
Compuestos Bicíclicos con Puentes/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Oligonucleótidos/biosíntesis , Compuestos Bicíclicos con Puentes/química , ADN/química , ADN Polimerasa Dirigida por ADN/química , Conformación Molecular , Oligonucleótidos/química
13.
Chemistry ; 23(33): 7953-7968, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28262999

RESUMEN

We describe the synthesis and pairing properties of the novel DNA analogue 7',5'-bicyclo(bc)-DNA. In this analogue, the point of attachment of the connecting phosphodiester group is switched from the 3' to the 7' position of the underlying bicyclic sugar unit and is thus in a topological position that is inaccessible in natural DNA. The corresponding phosphoramidite building blocks carrying all natural nucleobases were synthesized and incorporated into oligonucleotides. From Tm experiments of duplexes with complementary DNA and RNA we find that single modifications are generally well tolerated with some variability as to the nature of the nucleobase. Fully modified oligonucleotides show low affinity for RNA and DNA complements. However, they form antiparallel homo-duplexes with similar thermal stability as DNA. CD spectra of the homo-duplexes show distinct changes in the helix conformation compared to natural DNA. A conformational analysis at the ab initio level of the mononucleosides revealed two minimal energy structures which primarily deviate in the conformation of the cyclopentane ring. Molecular dynamics simulation of a 7',5'-bc-DNA homo-duplex revealed a right-handed structure with a smaller helical rise and a significantly wider minor groove compared to DNA. Interestingly, this duplex is characterized by an atypical, alternating 6'-endo/6'-exo conformational pattern of consecutive nucleotides which seems to be responsible for the poor binding to natural nucleic acids.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , ADN/química , Emparejamiento Base , Dicroismo Circular , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Compuestos Organofosforados/química , ARN/química , Termodinámica , Temperatura de Transición
14.
Chemistry ; 23(9): 2022-2025, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-27992671

RESUMEN

The modulation of excess electron transfer (EET) within DNA containing a dimethylaminopyrene (C-AP) as an electron donor and 5-bromouracil (Br dU) as an electron acceptor through phenanthrenyl pairs (phen-R) could be achieved by modifying the phenanthrenyl base surrogates with electron withdrawing and donating groups. Arranging the phenanthrenyl units to form a descending LUMO gradient increased the EET efficiency compared to the electron transfer through uniform LUMOs or an ascending LUMO gradient.


Asunto(s)
ADN/química , Teoría Cuántica , Bromouracilo/química , Dicroismo Circular , ADN/metabolismo , Transporte de Electrón , Electrones , Oligonucleótidos/química
15.
J Am Soc Mass Spectrom ; 27(7): 1186-96, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27080005

RESUMEN

Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Entropía , Cinética , ARN , Termodinámica
16.
Nucleic Acids Res ; 44(5): 2187-98, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26733580

RESUMEN

Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3'-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase ß but repaired only by strand displacement as the 5'-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.


Asunto(s)
ADN Polimerasa beta/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/química , Oligonucleótidos/química , Acetales/química , Acetales/metabolismo , Bioensayo , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Clonación Molecular , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Oligonucleótidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Nucleic Acids Res ; 43(9): 4713-20, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25897124

RESUMEN

The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ε-rC, ε-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was (32)P-labeled at the 5'-end and equipped with a puromycin unit at the 3'-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with (35)S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (ε-rC, ε-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/química , Animales , Oxidación-Reducción , Conejos
18.
Org Lett ; 17(8): 1950-3, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25837683

RESUMEN

The synthesis of 2'-fluoro tricyclo-DNA pyrimidine nucleosides with fluorine in the ribo-configuration and their incorporation into oligodeoxynucleotides was accomplished. Unlike the parent tc-T nucleoside, the 2'F-RNA-tc-T unit occurs in the 2'-exo conformation in the crystal. Specifically, F-RNA-tc-T was found to stabilize duplexes with RNA by +2 to +4 °C in Tm/mod. F-RNA-tc-nucleosides mix well with the DNA backbone and thus open up possibilities of using shorter and mixed-(DNA/tc-DNA) backbone oligonucleotides for therapeutic applications.


Asunto(s)
ADN/química , Flúor/química , Furanos/química , ARN/química , Modelos Moleculares , Conformación Molecular , Pirimidinas/química
19.
J Org Chem ; 80(7): 3556-65, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25767996

RESUMEN

The synthesis of the two fluorinated tricyclic nucleosides 6'-F-tc-T and 6'-F-tc-5(Me)C, as well as the corresponding building blocks for oligonucleotide assembly, was accomplished. An X-ray analysis of N(4)-benzoylated 6'-F-tc-(5Me)C reavealed a 2'-exo (north) conformation of the furanose ring, characterizing it as an RNA mimic. In contrast to observations in the bicyclo-DNA series, no short contact between the fluorine atom and the H6 of the base, reminiscent of a nonclassical F···H hydrogen bond, could be observed. Tm measurements of modified oligodeoxynucleotides with complementary RNA showed slightly sequence-dependent duplex stabilization profiles with maximum ΔTm/mod values of +4.5 °C for 6'-F-tc-(5Me)C and +1 °C for 6'-F-tc-T. In comparison with parent tc-modified oligonucleotides, no relevant changes in Tm were detected, attributing the fluorine substituent a neutral role in RNA affinity. A structural analysis of duplexes with DNA and RNA by CD-spectroscopy revealed a shift from B- to A-type conformation induced by the 6'-F-tc-nucleosides. This is not a specific "fluorine effect", as the same is also observed for the parent tc-modifications. The two fluorinated tc-nucleosides were also incorporated into a pure tricyclo-DNA backbone and showed no discrimination in Tm with complementary RNA, demonstrating that 6'-F substitution is also compatible within fully modified tc-oligonucleotides.


Asunto(s)
ADN/síntesis química , Flúor/química , Nucleósidos/síntesis química , Oligodesoxirribonucleótidos/síntesis química , Oligonucleótidos/síntesis química , Compuestos Organofosforados/química , ARN/química , Emparejamiento Base , Dicroismo Circular , Cristalografía por Rayos X , ADN/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligonucleótidos/química
20.
Beilstein J Org Chem ; 10: 1840-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25161745

RESUMEN

We present the synthesis of the two novel nucleosides iso-tc-T and bc(en)-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6'-C7' within the carbocyclic ring is planarized by either the presence of a C6'-C7' double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2'-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bc(en)-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3'-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that T m data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA