Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 2): 135251, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222785

RESUMEN

The DEAD-box RNA helicase DDX3X is a multifunctional protein involved in RNA metabolism and stress responses. In this study, we investigated the role of RG/RGG motifs in the dynamic process of liquid-liquid phase separation (LLPS) of DDX3X using cell-free assays and explored their potential link to cancer development through bioinformatic analysis. Our results demonstrate that the number, location, and composition of RG/RGG motifs significantly influence the ability of DDX3X to undergo phase separation and form self-aggregates. Mutational analysis revealed that the spacing between RG/RGG motifs and the number of glycine residues within each motif are critical factors in determining the extent of phase separation. Furthermore, we found that DDX3X is co-expressed with the stress granule protein G3BP1 in several cancer types and can undergo co-phase separation with G3BP1 in a cell-free system, suggesting a potential functional interaction between these proteins in phase-separated structures. DDX3X and G3BP1 may interact through their RG/RGG domains and subsequently exert important cellular functions under stress situation. Collectively, our findings provide novel insights into the role of RG/RGG motifs in modulating DDX3X phase separation and their potential contribution to cancer pathogenesis.

2.
Zhongguo Zhen Jiu ; 44(8): 955-60, 2024 Aug 12.
Artículo en Chino | MEDLINE | ID: mdl-39111796

RESUMEN

The effect of reinforcing and reducing techniques of moxibustion depends on types of moxibustion, operation methods and characteristics of acupoints. According to the ups and downs of pathogenic factors and healthy qi during the occurrence and development of prostate cancer, three stages are divided, namely, the stage of initial accumulation of cancer toxicity, the stage of the deficiency of healthy qi and toxin retention, and the stage of yang deficiency and cold stagnation. In the stage of initial accumulation of cancer toxicity, zangfu function is impaired and the dampness, heat and stasis toxin are accumulated in the body; due to which, the reducing technique of moxibustion should be dominant and the healthy qi be supported in combination. In treatment, the wheat-grain sized cone moxibustion, suppurative moxibustion and garlic-isolated moxibustion are applicable. The reducing purpose of moxibustion is obtained by delivering an appropriate increased number of moxa cones, large dosage and strong stimulation at acupoints. In the stage of the deficiency of healthy qi and toxin retention, qi movement is weakened and cancer toxin consumes yin; the reinforcing healthy qi and removing pathogenic factors should be operated simultaneously. In treatment, mild moxibustion and suppurative moxibustion can be used. The reduced number of moxa cones, moderate dosage of moxibustion and mild stimulation at acupoints should be considered to gently adjust the conditions of deficiency and excess. In the stage of yang deficiency and cold stagnation, spleen and kidney yang is deficient, and the meridians are blocked by cold and damp pathogens. In treatment, the reinforcing technique of moxibustion should be used specially and eliminating pathogenic factors be combined. Monkshood cake-insulated moxibustion, salt-insulated moxibustion and wheat-grain sized cone moxibustion can be adopted. The less number of moxa cones, small dosage and appropriately increased frequency of treatment should be considered to produce the gentle and sustained stimulation at acupoints so as to excite the healthy qi and promote the transformation of qi and blood.


Asunto(s)
Moxibustión , Neoplasias de la Próstata , Humanos , Moxibustión/métodos , Masculino , Neoplasias de la Próstata/terapia , Puntos de Acupuntura
3.
J Agric Food Chem ; 72(32): 18013-18026, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088205

RESUMEN

Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid ß-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid ß-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.


Asunto(s)
Resistencia a la Insulina , Metabolismo de los Lípidos , Músculo Esquelético , Piruvato Quinasa , Xantófilas , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Xantófilas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Masculino , Humanos , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
4.
World J Clin Oncol ; 15(6): 667-673, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38946830

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.

5.
Micromachines (Basel) ; 15(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39064322

RESUMEN

Electrical isolation devices are essential components for safeguarding the reliability of electronic systems under harsh conditions. Digital isolators are widely used in low-power circuits due to their high immunity to disturbances. In this paper, a capacitive digital isolator for high-efficiency power supply scenarios is proposed with a high common-mode transient immunity (CMTI) and high data transmission rate. The on-off keying (OOK) modulation technique is used to ensure a high speed and accurate signal transmission. A fully integrated high-voltage level-shift driver with an ns-scale delay is proposed for increasing the drive capacity. Post-simulation results in Cadence IC 6.1.7 with the standard 0.18 µm CMOS process show that the proposed architecture achieves a 25 Mbps data transmission rate and 15 ns typical propagation delay with output peak currents of 2 A/4 A, respectively. Meanwhile, a CMTI of more than 150 kV/µs is realized.

6.
Plant Dis ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916906

RESUMEN

Tobacco (Nicotiana tabacum L.) is one of the most widely cultivated industrial crops worldwide. From April to July 2023, about 40% of tobacco seedlings in the greenhouse exhibited irregular taupe lesions in Zhengzhou, Henan Province, China. At an early stage of the lesion development, light grey spots with the diameter of 1-2 mm were observed, these spots gradually expanded and connected into large irregular lesions causing leaf wrinkling or withered. A total of 12 infected leaf tissues were sterilized with 75% ethanol for 45 s, rinsed three times in sterilized water and then plated on potato dextrose agar (PDA) medium for 10 days at 28°C in darkness. Seven fungal colonies that show the similar appearance were isolated and three of them (MB-1, MB-2 and MB-3) were used for subsequent identification. Colonies of these strains on PDA with loose mycelium and orange-red pigment on the underside, white aerial in the center and light yellow hyphae near the periphery, formed in the shape of a concentric ring pattern. Ascomata appeared from the 14th day, were black, spherical or ellipsoid with walls of textura angularis, and size was 53.8-101.1 µm × 50.3-104.3 µm (n=30). Terminal hairs were brown and straight, gradually tapering toward the tips. Asci clavate or fusiform, spore bearing part 16.2-29.2 × 7.3-11.4 µm (n=21), with 8 irregularly arranged ascospores, evanescent. Ascospores are brown at maturity, biapiculate, navicular or fusiform shapes with size of 8.7-12.8 µm × 4.8-6.9 µm (n=100), and more or less inaequilateral. Single spore strains derived from these strains exhibited the morphological features consistent with the original strains. The morphological characteristics of the fungus were consistent with the description of Arcopilus aureus (Chivers) X.W. Wang & Samson (= Chaetomium aureum Chivers) (Lee et al. 2019). Furthermore, the sequences of RPB2 region were amplified from these strains and the result sequences (GenBank accession no. OR513105-OR513108) all showed a 100.00% identity with A. aureus strain CBS 538.73 (GenBank accession no. KX976807.1). It was reported that the RPB2 gene was efficient in discriminating Arcopilus species (Tavares et al. 2022), thus a maximum likelihood (ML) phylogenetic tree based on the RPB2 gene sequences were constructed using MEGA 7.0 with 1000 replications of bootstrapping (Kumar et al. 2016), which revealed that these strains formed a well-supported clade with A. aureus strains of (CBS 153.52 and CBS538.73) (Wang et al. 2022). Pathogenicity analysis were performed on healthy flue-cured tobacco seedlings leaves (cv Y85) by using mycelial agar plugs (5 mm in diameter) and spore suspension (1×106 spores/mL), and the PDA plugs and sterile water were used for control group, respectively. Tobacco seedlings were incubated in a 25°C and 70% RH growth chamber. After seven days, the leaves showed obvious symptoms, with taupe lesions and yellow halos on the periphery, whereas no symptoms were found on the control leaves. The A. aureu was then reisolated from inoculated diseased leaves. Previously, A. aureus has been only reported to cause leaf black disease on Pseudostellaria heterophylla in China (Yuan et al. 2021). To our knowledge, this is the first reported of A. aureus causing tobacco leaf grey spot worldwide. Arcopilus aureus has been reported as a plant biocontrol fungus (Wang et al. 2013). However, due to the potential serious damage in tobacco seedlings caused by this fungus, the use of A. aureus as a plant biocontrol agent needs to be given more attention, and disease control measures of this pathogen should be developed.

7.
Mater Horiz ; 11(17): 4159-4170, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38899460

RESUMEN

All-solid-state ionic conductive elastomers (ASSICEs) are emerging as a promising alternative to hydrogels and ionogels in flexible electronics. Nevertheless, the synthesis of ASSICEs with concomitant mechanical robustness, superior ionic conductivity, and cost-effective recyclability poses a formidable challenge, primarily attributed to the inherent contradiction between mechanical strength and ionic conductivity. Herein, we present a collaborative design of high-entropy topological network and multivalent ion-dipole interaction for ASSICEs, and successfully mitigate the contradiction between mechanical robustness and ionic conductivity. Benefiting from the synergistic effect of this design, the coordination, de-coordination, and intrachain transfer of Li+ are effectively boomed. The resultant ASSICEs display exceptional mechanical robustness (breaking strength: 7.45 MPa, fracture elongation: 2621%, toughness: 107.19 MJ m-3) and impressive ionic conductivity (1.15 × 10-2 S m-1 at 25 °C). Furthermore, these ASSICEs exhibit excellent environmental stability (fracture elongation exceeding 1400% at 50 °C or -60 °C) and recyclability. Significantly, the application of these ASSICEs in a strain sensor highlights their potential in various fields, including human-interface communication, aerospace vacuum measurement, and medical balloon monitoring.

8.
Materials (Basel) ; 17(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893834

RESUMEN

Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.

9.
J Adv Res ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825316

RESUMEN

INTRODUCTION: The therapeutic potential of fucoidan (FUC), a natural polysaccharide, in metabolic disorders is recognized, yet its underlying mechanisms remain unclear. METHODS: We conducted investigations into the therapeutic mechanisms of FUC sourced from Sargassum fulvellum concerning metabolic disorders induced by a high-sucrose diet (HSD), employing Drosophila melanogaster and mice models. Drosophila larvae were subjected to HSD exposure to monitor growth inhibition, reduced pupation, and developmental delays. Additionally, we examined the impact of FUC on growth- and development-related hormones in Drosophila. Furthermore, we assessed the modulation of larval intestinal homeostasis by FUC, focusing on the regulation of Notch signaling. In mice, we evaluated the effects of FUC on HSD-induced impairments in intestinal epithelial barrier integrity and gut hormone secretion. RESULTS: FUC supplementation significantly enhanced pupal weight in Drosophila larvae and effectively countered HSD-induced elevation of glucose and triglyceride levels. It notably influenced the expression of growth- and development-related hormones, particularly augmenting insulin-like peptides production while mitigating larval growth retardation. FUC also modulated larval intestinal homeostasis by negatively regulating Notch signaling, thereby protecting against HSD-induced metabolic stress. In mice, FUC ameliorated HSD-induced impairments in ileum epithelial barrier integrity and gut hormone secretion. CONCLUSIONS: Our findings demonstrate the multifaceted therapeutic effects of FUC in mitigating metabolic disorders and maintaining intestinal health. FUC holds promise as a therapeutic agent, with its effects attributed partly to the sulfate group and its ability to regulate Notch signaling, emphasizing its potential for addressing metabolic disorders.

10.
Angew Chem Int Ed Engl ; 63(33): e202406946, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38802316

RESUMEN

Control of phosphate capture and release is vital in environmental, biological, and pharmaceutical contexts. However, the binding of trivalent phosphate (PO4 3-) in water is exceptionally difficult due to its high hydration energy. Based on the anion coordination chemistry of phosphate, in this study, four charge-neutral tripodal hexaurea receptors (L1-L4), which were equipped with morpholine and polyethylene glycol terminal groups to enhance their solubility in water, were synthesized to enable the pH-triggered phosphate binding and release in aqueous solutions. Encouragingly, the receptors were found to bind PO4 3- anion in a 1 : 1 ratio via hydrogen bonds in 100 % water solutions, with L1 exhibiting the highest binding constant (1.2×103 M-1). These represent the first neutral anion ligands to bind phosphate in 100 % water and demonstrate the potential for phosphate capture and release in water through pH-triggered mechanisms, mimicking native phosphate binding proteins. Furthermore, L1 can also bind multiple bioavailable phosphate species, which may serve as model systems for probing and modulating phosphate homeostasis in biological and biomedical researches.


Asunto(s)
Aniones , Fosfatos , Agua , Fosfatos/química , Agua/química , Aniones/química , Concentración de Iones de Hidrógeno , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Enlace de Hidrógeno , Estructura Molecular , Sitios de Unión
11.
Res Sq ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798644

RESUMEN

Background: Cellular senescence is a hallmark of aging and has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation drives cellular senescence; however, the underlying mechanisms are unclear. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis. ABCA1 expression and its trafficking is afiltered in APOE4 and AD cellular and mouse models. However, whether ABCA1 trafficking is involved in cellular senescence in APOE4 and AD remains unknown. Methods: We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. An unbiased proteomic screening was performed to identify targets that mediate cellular ABCA1 trafficking. APOE4-TR mice, immortalized, primary and induced pluripotent stem cell (iPSC) models were used to examine the cholesterol-ABCA1-senescence pathways. Results: Bulk and single nuclei transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) revealed upregulation of cellular senescence transcriptome signatures in AD, which was strongly correlated with ABCA1 expression. Immunofluorescence and immunoblotting analyses confirmed increased ABCA1 expression in AD brain tissues, which was associated with lipofuscin-stained lipids and mTOR phosphorylation. Using discovery proteomics, caveolin-1, a sensor of cellular cholesterol accumulation, was identified to promote ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was found in both APOE4-TR mouse models and AD human brains. Cholesterol induced mTORC1 activation was regulated by ABCA1 expression or its lysosomal trapping. Reducing cholesterol by cyclodextrin in APOE4-TR mice reduced ABCA1 lysosome trapping and increased ABCA1 recycling to efflux cholesterol to HDL particles, reducing mTORC1 activation and senescence-associated neuroinflammation. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Conclusions: Cholesterol accumulation in APOE4 and AD induced caveolin-1 expression, which traps ABCA1 in lysosomes to activate mTORC1 pathways and induce cellular senescence. This study provided novel insights into how cholesterol accumulation in APOE4 and AD accelerates senescence.

12.
China CDC Wkly ; 6(15): 312-317, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736993

RESUMEN

What is already known about this topic?: Mucosal IgA plays a crucial role in host immunity against respiratory viruses. Recent studies suggest that it has the potential to mitigate the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. However, a comprehensive population-based analysis examining mucosal IgA levels following the winter 2022 wave of the coronavirus disease 2019 (COVID-19) pandemic is yet to be conducted. What is added by this report?: In our study involving 3,421 participants, we documented IgA responses subsequent to SARS-CoV-2 infection. A significant proportion of individuals sustained increased levels of IgA for over six months. These levels were also observed in individuals with prior infections who underwent asymptomatic reinfections, indicating an active production of IgA antibodies. Further, individuals with multiple vaccinations or severe symptoms tended to display elevated IgA levels after recovery. What are the implications for public health practice?: IgA in the nasal mucosa is crucial for defense against SARS-CoV-2 infection. These insights can enhance our knowledge of immune responses following infection and have provided certain reference values for disease prevention and control strategies.

13.
J Ethnopharmacol ; 331: 118336, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750983

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura et Migo, known as "Tiepi Shihu" in traditional Chinese medicine, boasts an extensive history of medicinal use documented in the Chinese Pharmacopoeia. "Shen Nong Ben Cao Jing" records D. officinale as a superior herbal medicine for fortifying "Yin" and invigorating the five viscera. Erianin, a benzidine compound, emerges as a prominent active constituent derived from D. officinale, with the pharmacological efficacy of D. officinale closely linked to the anti-inflammatory properties of erianin. AIM OF THE STUDY: Acute lung injury (ALI) is a substantial threat to global public health, while P-selectin stands out as a promising novel target for treating acute inflammatory conditions. This investigation aims to explore the therapeutic potential of erianin in ALI treatment and elucidate the underlying mechanisms. EXPERIMENTAL DESIGN: The effectiveness of erianin in conferring protection against ALI was investigated through comprehensive histopathological and biochemical analyses of lung tissues and bronchoalveolar lavage fluid (BALF) in an in vivo model of LPS-induced ALI in mice. The impact of erianin on fMLP-induced neutrophil chemotaxis was quantitatively assessed using the Transwell and Zigmond chamber, respectively. To determine the therapeutic target of erianin and elucidate their binding capability, a series of sophisticated assays were employed, including drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and molecular docking analyses. RESULTS: Erianin demonstrated a significant alleviation of LPS-induced acute lung injury, characterized by reduced total cell and neutrophil counts and diminished total protein contents in BALF. Moreover, erianin exhibited a capacity to decrease proinflammatory cytokine production in both lung tissues and BALF. Notably, erianin effectively suppressed the activation of NF-κB signaling in the lung tissues of LPS- challenged mice; however, it did not exhibit in vitro inhibitory effects on inflammation in LPS-induced human pulmonary microvascular endothelial cells (HPMECs). Additionally, erianin blocked the adhesion and rolling of neutrophils on HPMECs. While erianin did not influence endothelial P-selectin expression or cytomembrane translocation, it significantly reduced the ligand affinity between P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1). CONCLUSIONS: Erianin inhibits P-selectin-mediated neutrophil adhesion to activated endothelium, thereby alleviating ALI. The present study highlights the potential of erianin as a promising lead for ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Neutrófilos , Selectina-P , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Animales , Lipopolisacáridos/toxicidad , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Selectina-P/metabolismo , Masculino , Ratones , Adhesión Celular/efectos de los fármacos , Antiinflamatorios/farmacología , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Líquido del Lavado Bronquioalveolar , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Bibencilos/farmacología , Fenol
14.
J Am Chem Soc ; 146(15): 10908-10916, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579155

RESUMEN

Self-assembly of sophisticated polyhedral cages has drawn much attention because of their elaborate structures and potential applications. Herein, we report the anion-coordination-driven assembly of the first A8L12 (A = anion, L = ligand) octanuclear cubic structures from phosphate anion and p-xylylene-spaced bis-bis(urea) ligands via peripheral templating of countercations (TEA+ or TPA+). By attaching terminal aryl rings (phenyl or naphthyl) to the ligand through a flexible (methylene) linker, these aryls actively participate in the formation of plenty of "aromatic pockets" for guest cation binding. As a result, multiple peripheral guests (up to 22) of suitable size are bound on the faces and vertices of the cube, forming a network of cation-π interactions to stabilize the cube structure. More interestingly, when chiral ligands were used, either diastereomers of mixed Λ- and Δ-configurations (with TEA+ countercation) for the phosphate coordination centers or enantiopure cubes (with TPA+) were formed. Thus, the assembly and chirality of the cube can be modulated by remote terminal groups and peripheral templating tetraalkylammonium cations.

15.
J Agric Food Chem ; 72(18): 10391-10405, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669300

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive. Our present findings indicated that fucoxanthin significantly alleviated palmitic acid (PA)-induced hepatic lipid deposition in vitro and obesity-induced hepatic steatosis in ob/ob mice. Moreover, at both the protein and transcriptional levels, fucoxanthin effectively increased the expression of PPARα and CPT1 (involved in fatty acid oxidation) and suppressed FASN and SREBP1c (associated with lipogenesis) in both PA-induced HepG2 cells and hepatic tissues in ob/ob mice. This modulation was accompanied by the activation of AMPK. The capacity of fucoxanthin to improve hepatic lipid deposition was significantly attenuated when utilizing the AMPK inhibitor or siRNA-mediated AMPK silencing. Mechanistically, fucoxanthin activates AMPK, subsequently regulating the KEAP1/Nrf2/ARE signaling pathway to exert antioxidative effects and stimulating the PGC1α/NRF1 axis to enhance mitochondrial biogenesis. These collective actions contribute to fucoxanthin's amelioration of hepatic steatosis induced by metabolic perturbations. These findings offer valuable insights into the prospective utilization of fucoxanthin as a therapeutic strategy for managing MAFLD.


Asunto(s)
Hígado , Ratones Endogámicos C57BL , Xantófilas , Xantófilas/farmacología , Animales , Humanos , Ratones , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Células Hep G2 , Metabolismo de los Lípidos/efectos de los fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Lipogénesis/efectos de los fármacos , Ratones Obesos
16.
Biochem Biophys Res Commun ; 704: 149706, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38432144

RESUMEN

Glioma patients often undertake psychiatric disorders such as depression and anxiety. There are several clinical epidemiological studies on glioma-associated depression, but basic research and corresponding animal experiments are still lacking. Here, we observed that glioma-bearing mice exhibited atypical depression-like behaviors in orthotopic glioma mouse models. The concentrations of monoamine neurotransmitters were detected by enzyme-linked immunosorbent assay (ELISA), revealing a decrease in 5-hydroxytryptamine (5-HT) levels in para-glioma tissues. The related gene expression levels also altered, detected by quantitative RT-PCR. Then, we developed a glioma-depression comorbidity mouse model. Through sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST) and other tests, we found that the occurrence of glioma could lead to changes in depression-like behaviors in a chronic unpredictable mild stress (CUMS) mouse model. The results of RNA sequencing (RNA-seq) indicated that the altered expression of glutamatergic synapse related genes in the paratumor tissues might be one of the main molecular features of the comorbidity model. Our findings suggested that the presence of glioma caused and altered depression-like behaviors, which was potentially related to the 5-HT and glutamatergic synapse pathways.


Asunto(s)
Depresión , Serotonina , Humanos , Ratones , Animales , Depresión/metabolismo , Serotonina/metabolismo , Antidepresivos/farmacología , Conducta Animal , Natación , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo
17.
Respir Res ; 25(1): 147, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555425

RESUMEN

Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current literature on the role of macrophages in the pathogenesis of pulmonary hypertension, including the origin of pulmonary macrophages and their response to triggers of pulmonary hypertension. We then discuss the interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, and may provide new perspectives for pulmonary hypertension management.


Asunto(s)
Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/etiología , Macrófagos , Macrófagos Alveolares/patología , Inflamación/complicaciones , Citocinas
18.
J Ethnopharmacol ; 328: 118123, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554854

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 µg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY: Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS: The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS: Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the ß2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with ß2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing ß2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.


Asunto(s)
Bibencilos , Colitis Ulcerosa , Colitis , Guayacol/análogos & derivados , Ratones , Animales , Antígenos CD18/metabolismo , Antígenos CD18/uso terapéutico , Colon , Quimiotaxis , Simulación del Acoplamiento Molecular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Bibencilos/farmacología , Antiinflamatorios/efectos adversos , Macrófagos/metabolismo , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , FN-kappa B/metabolismo
19.
ACS Omega ; 9(5): 5846-5853, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343952

RESUMEN

Wide-range NIR lifetimes of lanthanide ion-doped nanocrystals are highly desired for numerous bioapplications. As one of the most promising NIR emission bands, the lifetime of Er3+ at 1.5 µm can be as long as ∼10 ms and be greatly shortened by increasing the doping level of either activator Er3+ or sensitizer Yb3+. However, the shortened lifetime is mostly accompanied by the quenching effects, highly restraining the light signal intensity. Alternatively, prolonging the lifetime of Er3+ NIR lifetime without luminescence quenching is of vital significance as it raises the upper limit of the lifetime range and maintains the effective signal intensity. In this work, we revealed that Yb3+ can bidirectionally tune the NIR lifetime of Er3+. By introducing Yb3+, in addition to the substantially improved luminescence intensities, the prolonged NIR lifetime can be generated in low-Er3+-doped NaYF4 nanocrystals, while monotonously decreased lifetime appears in Er3+ heavily doped nanocrystals. To investigate the mechanisms of this bidirectional lifetime tuning and meanwhile avoid additional structural influences, the size and morphology of nanocrystals with different doping compositions were controlled to be similar. The decay dynamics of Er3+ NIR emissions of different nanocrystals were simulated to explain the effects of Yb3+. This work provides insights into the manipulation of the NIR lifetime in Er3+/Yb3+-codoped nanocrystals.

20.
J Am Chem Soc ; 146(3): 2167-2173, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214166

RESUMEN

Due to the large multi-elemental space desired for property screening and optimization, high-entropy alloys (HEAs) hold greater potential over conventional alloys for a range of applications, such as structural materials, energy conversion, and catalysis. However, the relationship between the HEA composition and its local structural/elemental configuration is not well understood, particularly in noble-metal-based HEA nanomaterials, hindering the design and development of nano-HEAs in energy conversion and catalysis applications. Herein, we determined precise atomic-level structural and elemental arrangements in model HEAs composed of RhPtPdFeCo and RuPtPdFeCo to unveil their local characteristics. Notably, by changing just one constituent element in the HEA (Rh to Ru), we found dramatic changes in the elemental arrangement from complete random mixing to a local single elemental ordering feature. Additionally, we demonstrate that the local ordering in RuPtPdFeCo can be further controlled by varying the Ru concentration, allowing us to toggle between local Ru clustering and distinct heterostructures in multicomponent systems. Overall, our study presents a practical approach for manipulating local atomic structures and elemental arrangements in noble-metal-based HEA systems, which could provide in-depth knowledge to mechanistically understand the functionality of noble-metal-based HEA nanomaterials in practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA