RESUMEN
Herein, we report a computation study based on the density functional theory calculations to understand the mechanism and ligand effect of the base-stabilized dialumenes toward dihydrogen activation. Among all of the examined modes of dihydrogen activation using the base-stabilized dialumene, we found that the concerted 1,2-hydrogenation of the AlâAl double bond is kinetically more preferable. The concerted 1,2-hydrogenation of the AlâAl double bond adopts an electron-transfer model with certain asynchrony. That is, the initial electron donation from the H-H σ bonding orbital to the empty 3p orbital of the Al1 center is followed by the backdonation from the lone pair electron of the Al2 center to the H-H σ antibonding orbital. Combined with the energy decomposition analysis on the transition states of the concerted 1,2-hydrogenation of the AlâAl double bond and the topographic steric mapping analysis on the free dialumenes, we ascribe the higher reactivity of the aryl-substituted dialumene over the silyl-substituted analogue in dihydrogen activation to the stronger electron-withdrawing effect of the aryl group, which not only increases the flexibility of the AlâAl double bond but also enhances the Lewis acidity of the AlâAl core. Consequently, the aryl-substituted dialumene fragment suffers less geometric deformation, and the orbital interactions between the dialumene and dihydrogen moieties are more attractive during the 1,2-hydrogenation process. Moreover, our calculations also predict that the AlâAl double bond has a good tolerance with the stronger electron-withdrawing group (-CF3) and the weaker σ-donating N-heterocyclic carbene (NHC) analogue (e.g., triazol carbene and NHSi). The reactivity of the dialumene in dihydrogen activation can be further improved by introducing these groups as the supporting ligand and the stabilizing base on the AlâAl core, respectively.
RESUMEN
The peroxo dizinc Zn(2)O(2) complex Q coordinated by imidazole and carboxylate groups for each Zn center has been designed to model the hydroxylase component of methane monooxygenase (MMO) enzyme, on the basis of the experimentally available structure information of enzyme with divalent zinc ion and the MMO with Fe(2)O(2) core. The reaction mechanism for the hydroxylation of methane and its derivatives catalyzed by Q has been investigated at the B3LYP*/cc-pVTZ, Lanl2tz level in protein solution environment. These hydroxylation reactions proceed via a radical-rebound mechanism, with the rate-determining step of the C-H bond cleavage. This radical-rebound reaction mechanism is analogous to the experimentally available MMOs with diamond Fe(2)O(2) core accompanied by a coordinate number of six for the hydroxylation of methane. The rate constants for the hydroxylation of substrates catalyzed by Q increase along CH(4) < CH(3)F < CH(3)CN ≈ CH(3)NO(2) < CH(3)CH(3). Both the activation strain ΔE(≠)(strain) and the stabilizing interaction ΔE(≠)(int) jointly affect the activation energy ΔE(≠). For the C-H cleavage of substrate CH(3)X, with the decrease of steric shielding for the substituted CH(3)X (X = F > H > CH(3) > NO(2) > CN) attacking the O center in Q, the activation strain ΔE(≠)(strain) decreases, whereas the stabilizing interaction ΔE(≠)(int) increases. It is predicted that the MMO with peroxo dizinc Zn(2)O(2) core should be a promising catalyst for the hydroxylation of methane and its derivatives.
Asunto(s)
Metano/química , Oxigenasas/química , Zinc/química , Biocatálisis , Activación Enzimática , Hidroxilación , Metano/análogos & derivados , Metano/metabolismo , Modelos Moleculares , Estructura Molecular , Oxigenasas/metabolismo , Especificidad por SustratoRESUMEN
Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Litchi/metabolismo , Proteínas de Plantas/biosíntesis , Transducción de Señal , Estrés Fisiológico , Litchi/genética , Proteínas de Plantas/genéticaRESUMEN
The gas-phase reaction mechanism between palladium monoxide and methane has been theoretically investigated on the singlet and triplet state potential energy surfaces (PESs) at the CCSD(T)/AVTZ//B3LYP/6-311+G(2d, 2p), SDD level. The major reaction channel leads to the products PdCH(2) + H(2)O, whereas the minor channel results in the products Pd + CH(3)OH, CH(2)OPd + H(2), and PdOH + CH(3). The minimum energy reaction pathway for the formation of main products (PdCH(2) + H(2)O), involving one spin inversion, prefers to start at the triplet state PES and afterward proceed along the singlet state PES, where both CH(3)PdOH and CH(3)Pd(O)H are the critical intermediates. Furthermore, the rate-determining step is RS-CH(3) PdOH â RS-2-TS1cb â RS-CH(2)Pd(H)OH with the rate constant of k = 1.48 × 10(12) exp(-93,930/RT). For the first C-H bond cleavage, both the activation strain ΔE(≠)(strain) and the stabilizing interaction ΔE(≠)(int) affect the activation energy ΔE(≠), with ΔE(≠)(int) in favor of the direct oxidative insertion. On the other hand, in the PdCH(2) + H(2) O reaction, the main products are Pd + CH(3)OH, and CH(3)PdOH is the energetically preferred intermediate. In the CH(2)OPd + H(2) reaction, the main products are Pd + CH(3)OH with the energetically preferred intermediate H(2)PdOCH(2). In the Pd + CH(3)OH reaction, the main products are CH(2)OPd + H(2), and H(2)PdOCH(2) is the energetically predominant intermediate. The intermediates, PdCH(2), H(2) PdCO, and t-HPdCHO are energetically preferred in the PdC + H(2), PdCO + H(2), and H(2)Pd + CO reactions, respectively. Besides, PdO toward methane activation exhibits higher reaction efficiency than the atom Pd and its first-row congener NiO.
Asunto(s)
Metano/química , Paladio/química , Teoría Cuántica , Gases/químicaRESUMEN
Reverse transcription quantitative real-time PCR (RT-qPCR), a sensitive technique for quantifying gene expression, depends on the stability of the reference gene(s) used for data normalization. Only a few studies on reference genes have been done in fruit trees and none in litchi. In the present study, seven frequently used candidate reference genes, including actin (ACTIN), glyceraldehyde-3-phosphate-dehydrogenase (GADPH), elongation factor 1-alpha (EF-1α), poly ubiquitin enzyme (UBQ), α-tubulin (TUA), ß-tubulin (TUB) and RNA polymerase-II transcription factor (RPII), were evaluated for their expression stability in litchi. A total of 78 samples, including different varieties, tissues, organs, developmental stages and treatments, such as NAA, shading and girdling plus defoliation, were addressed in this analysis. Our results showed that GAPDH was the most suitable reference gene among all the tested samples, different organs and NAA treatment. ACTIN was stably expressed in varieties and fruit developmental stages. RPII and UBQ exhibited better expression stability in tissues. EF-1α was the most stable gene in shading and girdling plus defoliation treatments. Moreover, using combination of two genes as reference genes might improve the reliability of gene expression by RT-qPCR in litchi. A better combination was GAPDH + EF-1α or GAPDH + ACTIN for all the examined samples. In addition, the validated reference genes were further relied on to quantify the expression of an interested gene, LcARF13 under different experimental conditions. These results first provide guidelines for reference genes selection under different experimental conditions and also a foundation for more accurate and widespread use of RT-qPCR in litchi.