Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952034

RESUMEN

Nanotechnology has demonstrated significant potential to improve agricultural production and increase crop tolerance to abiotic stress including exposure to heavy metals. The present study investigated the mechanisms by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) alleviated cadmium (Cd)-induced toxicity to rice (Oryza sativa L.). AVGE Se NPs, chemically synthesized bare Se NPs, and NaSeO3 as an ionic control were applied to Cd-stressed rice seedlings via root exposure in both hydroponic and soil systems. Upon exposure to AVGE Se NPs at 15 mg Se/L, the fresh root biomass was significantly increased by 100.7% and 19.5% as compared to Cd control and conventional bare Se NPs. Transcriptional analyses highlighted that AVGE Se NPs activated stress signaling and defense related pathways, including glutathione metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction. Specifically, exposure to AVGE Se NPs upregulated the expression of genes associated with the gibberellic acid (GA) biosynthesis by and 4.79- and 3.29-fold as compared to the Cd-alone treatment and the untreated control, respectively. Importantly, AVGE Se NPs restored the composition of the endophyte community and recruit of beneficial species under Cd exposure; the relative abundance of Azospirillum was significantly increased in roots, shoots, and the rhizosphere soil by 0.73-, 4.58- and 0.37-fold, respectively, relative to the Cd-alone treatment. Collectively, these findings highlight the significant potential of AVGE Se NPs to enhance plant growth and to minimize the Cd-induced toxicity in rice and provide a promising nanoenabled strategy to enhance food safety upon crop cultivation in contaminated agricultural soils.

2.
Nat Microbiol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862603

RESUMEN

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.

3.
Heliyon ; 10(11): e31749, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845946

RESUMEN

Background: In addition to damage to the lungs, coronavirus disease 2019 (COVID-19) can damage multiple organs, including the kidney. Our purpose was to analyze the research hotspots and trends in COVID-19 and kidney diseases using bibliometrics to help clarify the development direction of this field. Methods: We selected and extracted all relevant publications related to COVID-19 and the kidney from the Web of Science from December 1, 2019, to July 24, 2022. VOSviewer, RStudio, CiteSpace, and other software were used to visualize keywords, publishing trends, authors and their countries, and institutions in this field and perform the statistical analysis. Results: A total of 645 articles published in 220 journals were included in this study. The United States and China contributed the most publications and were most active in international cooperation. In addition to COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acute kidney injury (AKI), kidney transplant and mortality were the three keywords with the highest frequencies. In the initial stage of the COVID-19 outbreak, research focused on the clinical symptoms of COVID-19 and other macrocharacteristics, while in a later stage, the associations between SARS-CoV-2 infection and CKD and AKI, as well as the prognosis of patients with kidney disease or those who underwent kidney transplantation, gained more attention. The immune response and vaccines were also recent research hotspots. Conclusions: This bibliometric analysis provides a comprehensive overview of research on COVID-19 and kidney disease, which has received continuous, global attention. AKI, CKD, kidney transplantation, immune response and vaccines are among the hotspots in this field.

4.
Inorg Chem ; 63(26): 12333-12341, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38898577

RESUMEN

Metal-anchored covalent organic frameworks (COFs), as a class of significant derivatives of COFs, are widely used as heterogeneous catalysts in diverse chemical reactions. However, they are typically synthesized via post-treatment strategies, which often lead to the decline of COF crystallinity, decrease of porous properties, instability in catalytic performances, generation of additional chemical waste, and consumption of excess time and energy. In this work, we demonstrate an approach to construct a metal-functionalized COF via a one-pot method induced by γ-ray radiation. Specifically, copper-coordinated COF was in situ synthesized by irradiating a mixture of monomers and copper salt under ambient conditions. Interestingly, the initial Cu2+ ions were reduced to Cu+ ions by the radiation-generated reducing species, affording a unique mixed-valent copper(I/II)-coordinated COF. Additionally, the copper-coordinated COF displayed enhanced crystallinity and porous properties compared to those of the parent COF, displaying an opposite trend to the postsynthetic method. Notably, the introduced copper on the COF skeleton endowed the parent COF with catalytic ability. The resulting copper-coordinated COF exhibited remarkable catalytic performances in the reduction of 4-nitrophenol to 4-aminophenol and maintained almost unchanged catalytic performance after five catalytic cycles.

5.
Free Radic Biol Med ; 221: 52-63, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38754745

RESUMEN

OBJECTIVE: Virus infection is a major threat to human health and remains a significant cause of death to date. Macrophages are important innate immune cells that exhibit indispensable roles in controlling virus replication. It was recently reported that metabolic adaption determines the functional state of macrophages. Thus, to further unravel the crucial factors involving in metabolic adaption of macrophages might provide the potential candidates for optimizing their anti-viral capabilities. METHODS: RT-PCR, Western blotting, virus plaque assay and HE were used to evaluate the viral load in virus-infected Tipe1M-KO and Tipe1f/f mice or cultured macrophages. RNA sequencing were performed with Tipe1M-KOor Tipe1f/f BMDMs upon virus infection. Extracellular acidification rate (ECAR) was applied for analyzing glycolysis rate in virus-infected BMDMs. Co-immunoprecipitation (Co-IP) assay and LC-MS/MS were used to determine the potential interacting proteins of TIPE1. RESULTS: TIPE1 level was significantly reduced in BMDMs infected with either RNA viruses or DNA virus. Deficiency of Tipe1 in macrophages increased viral load and aggravated tissue damage. Mechanistically, TIPE1 suppressed the glycolytic capacity of macrophages through interacting with PKM2 and promoting its ubiquitination degradation, which in turn decreased HIF1α transcription and viral replication in macrophages. CONCLUSIONS: TIPE1 functions as a novel regulator for metabolic reprogramming and virus infection in macrophages.


Asunto(s)
Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Proteínas de la Membrana , Proteínas de Unión a Hormona Tiroide , Replicación Viral , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Retroalimentación Fisiológica , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Macrófagos/virología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Piruvato Quinasa , Ubiquitinación , Replicación Viral/genética
6.
Food Chem ; 454: 139754, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805930

RESUMEN

The complicated food matrix seriously limits the one-time test for the potential food hazards in non-targeted analysis. Accordingly, developing advanced sample pretreatment strategy to reduce matrix effects is of great significance. Herein, newly-integrated hollow-structured covalent organic frameworks (HCOFs) with large internal adsorption capacity and target-matched pore size were synthesized via etching the core-shell structured COFs. The as-prepared HCOFs could be directly applied for matrix clean-up of vegetable samples, while further modification of polydopamine (PDA) network facilitated application for animal samples. Both HCOFs and HCOFs@PDA with the comparable sizes to the matrix interference gave excellent adsorption performance to targets, achieving satisfied recoveries (70%-120%) toward 90 pesticides and 44 veterinary drugs in one-test, respectively. This work showed the great potential of the facile-integrated HCOFs with high stability and customized size to remove interference matrix and offered a universal strategy to achieve simultaneous screening of hazards with considerable quantity in high-throughput non-targeted analysis.


Asunto(s)
Contaminación de Alimentos , Estructuras Metalorgánicas , Verduras , Estructuras Metalorgánicas/química , Contaminación de Alimentos/análisis , Adsorción , Animales , Verduras/química , Polímeros/química , Plaguicidas/química , Plaguicidas/análisis , Drogas Veterinarias/análisis , Drogas Veterinarias/química , Indoles/química
7.
Chin Med J (Engl) ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38809055

RESUMEN

BACKGROUND: Spatiotemporal disparities exist in the disease burden of non-communicable diseases (NCDs) attributable to kidney dysfunction, which has been poorly assessed. The present study aimed to evaluate the spatiotemporal trends of the global burden of NCDs attributable to kidney dysfunction and to predict future trends. METHODS: Data on NCDs attributable to kidney dysfunction, quantified using deaths and disability-adjusted life-years (DALYs), were extracted from the Global Burden of Diseases Injuries, and Risk Factors (GBD) Study in 2019. Estimated annual percentage change (EAPC) of age-standardized rate (ASR) was calculated with linear regression to assess the changing trend. Pearson's correlation analysis was used to determine the association between ASR and Sociodemographic Index (SDI) for 21 GBD regions. A Bayesian age-period-cohort (BAPC) model was used to predict future trends up to 2040. RESULTS: Between 1990 and 2019, the absolute number of deaths and DALYs from NCDs attributable to kidney dysfunction increased globally. The death cases increased from 1,571,720 (95% uncertainty interval [UI]: 1,344,420-1,805,598) in 1990 to 3,161,552 (95% UI: 2,723,363-3,623,814) in 2019 for both sexes combined. Both the ASR of death and DALYs increased in Andean Latin America, the Caribbean, Central Latin America, Southeast Asia, Oceania, and Southern Sub-Saharan Africa. In contrast, the age-standardized metrics decreased in the high-income Asia Pacific region. The relationship between SDI and ASR of death and DALYs was negatively correlated. The BAPC model indicated that there would be approximately 5,806,780 death cases and 119,013,659 DALY cases in 2040 that could be attributed to kidney dysfunction. Age-standardized death of cardiovascular diseases (CVDs) and CKD attributable to kidney dysfunction were predicted to decrease and increase from 2020 to 2040, respectively. CONCLUSION: NCDs attributable to kidney dysfunction remain a major public health concern worldwide. Efforts are required to attenuate the death and disability burden, particularly in low and low-to-middle SDI regions.

8.
Front Oncol ; 14: 1361721, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800376

RESUMEN

Introduction: MicroRNA-875-5p (miR-875-5p) is a cancer-related microRNA. It has been demonstrated that miR-875-5p participates in the development of various types of cancer such as hepatocellular carcinoma, gastric carcinoma, prostate and bladder cancer. Previous research suggested that miR-875 is implicated in the development of cervical cancer cells. However, the exact role and function of miR-875-5p in cervical cancer remain unexplored. It is important to examine the role and function of miR-875-5p and the associated signaling pathway, as the findings may have diagnostic and therapeutic significance. Thus, in this study, we investigated the effect of miR-875-5p on the growth and metastasis of cervical cancer cells and the possible underlying mechanisms. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-875-5p in cervical cancer cells and normal cervical epithelium. After overexpression or co-expression of miR-875-5p in cells, the changes in cell function were analyzed. Western blot was used to detect the expression changes of epithelial-mesenchymal transition (EMT) -related proteins and autophagy-related proteins. Results: Functional studies demonstrated that miR-875-5p overexpression significantly inhibited the proliferation, migration, invasion, and EMT, and promotes apoptosis and autophagy of cervical cancer cells., while miR-875-5p knockdown promoted the proliferation, migration, invasion, and EMT, and inhibited apoptosis and autophagy cervical cancer cells. Furthermore, Western blot results showed that overexpression of miR-875-5p downregulated the expressions of N-cadherin, Snail, Vimentin and microtubule-associated protein 1 light chain 3B I (LC3B I). Conversely, miR-875-5p upregulated the expression of E-cadherin. Conclusion: In conclusion, our findings suggest that miR-875-5p functions as a tumor inhibitor suppressing the growth and metastasis of cervical cancer. Overexpression of miR-875-5p inhibits malignant behavior and promotes autophagy and apoptosis in cervical cancer cells. These findings advance our understanding of the role and function of miR-875-5p in cervical cancer and could facilitate the development of early genetic markers or biomarkers and therapeutic targets for cervical cancer.

9.
Plant Cell Environ ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742574

RESUMEN

Soil phosphorus (P) availability affects plant growth and distribution. However, it is still unknown how sex-specific variation in functional traits affects plants' P acquisition and soil P transformation. On wet sites, female poplars had a greater specific root length (SRL), and a higher diversity of arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing bacteria (PSB). Male poplars living on wet sites increased the abundance of AMF and PSB communities and enhanced moderately labile and highly resistant organic P mineralisation via increased phosphatase activity. In contrast, on the dry site, the abundance and diversity of AMF and PSB communities increased in females, enhancing moderately labile and highly resistant organic P mineralisation via elevating phosphatase activities. Males maintained greater SRL and promoted Ca-P mobilisation via the release of root carboxylic acids and rhizosphere acidification on the dry site. The AMF community diversity followed a similar pattern as that of the PSB community when altering the P availability of different-sex plants. Our results indicated that organic P and Ca-P are the major sources of plant-available P in natural P. euphratica forests. Seasonal shifts and geographic locations affected the share of organic and inorganic P pools, and AMF and PSB diversities, ultimately altering sex-specific P acquisition strategies of plants.

10.
Mar Genomics ; 75: 101108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735675

RESUMEN

Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.


Asunto(s)
Genoma Bacteriano , Compuestos de Sulfonio , Azufre , Compuestos de Sulfonio/metabolismo , Azufre/metabolismo , Agua de Mar/microbiología , Sulfuros/metabolismo , China
11.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727340

RESUMEN

Nanoscale agrochemicals have been widely used in sustainable agriculture and may potentially affect the nitrogen fixation process in legume crops. The present study investigated the size-effects of copper oxide nanoparticles (CuO NPs) on nitrogen assimilation in soybean (G. max (L.) Merrill) plants, which were treated with different sizes (20 and 50 nm) of CuO NPs at low use doses (1 and 10 mg/kg) for 21 days under greenhouse conditions. The results showed that 50 nm CuO NPs significantly increased the fresh biomass more than 20 nm CuO NPs achieved at 10 mg/kg. The activities of N assimilation-associated enzymes and the contents of nitrogenous compounds, including nitrates, proteins, and amino acids, in soybean tissues were greatly increased across all the CuO NP treatments. The use doses of two sizes of CuO NPs had no impact on the Cu contents in shoots and roots but indeed increased the Cu contents in soils in a dose-dependent fashion. Overall, our findings demonstrated that both 20 and 50 nm CuO NPs could positively alter soybean growth and boost N assimilation, furthering our understanding that the application of nanoscale micro-nutrient-related agrochemicals at an optimal size and dose will greatly contribute to increasing the yield and quality of crops.

12.
Angew Chem Int Ed Engl ; 63(27): e202405213, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637914

RESUMEN

Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.

13.
Angew Chem Int Ed Engl ; : e202406845, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687326

RESUMEN

Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.

14.
Front Psychiatry ; 15: 1348895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651009

RESUMEN

Introduction: Research has indicated that individuals diagnosed with bipolar disorder (BD) might experience alterations in their olfaction or levels of serum tumor necrosis factor-α (TNF-α), but no studies have investigated olfactory function and serum TNF-α in BD patients simultaneously. Moreover, there is a lack of existing research that compares the longitudinal olfactory function between individuals with manic and euthymic BD I. Methods: Patients with manic BD I (BDM, n=44) and healthy controls (HCs, n=32) were evaluated symptoms (measured via the Young Manic Rating Scale, YRMS), social function (measured via the Global Assessment Function, GAF), serum TNF-α, and olfactory function (via the Sniffin' Sticks test) including olfactory sensitivity (OS) and olfactory identification (OI). The BDM patients were followed up to the remission period and re-evaluated again. We compared OS, OI and serum TNF-α in manic and euthymic patients with BD I and HCs. We examined the correlation between olfactory function and symptoms, social function, and serum TNF-α in patients with BD I. Results: The BDM patients exhibited significantly lower OS and OI compared to the HCs (Z = -2.235, P = 0.025; t = -6.005, P < 0.001), while a positive correlation was observed between OS and GAF score (r = 0.313, P = 0.039). The OS in the BD I remission group (n=25) exhibited significantly superior performance compared to the BDM group (t = -4.056, P < 0.001), and the same as that in the HCs (P = 0.503). The change in OS showed a positive correlation with the decrease in YMRS score (r = 0.445, P = 0.026), and a negative correlation with the course of disease (r = -0.594, P = 0.002). The TNF-α in BD I patients was significantly lower compared to HCs (P < 0.001), and not significantly correlated with olfactory function (all P > 0.05). Conclusion: The findings suggest that OS and OI are impaired in BDM patients, and the impaired OS in those patients can be recovered in the remission stage. OI may serve as a potential characteristic marker of BD. OS might be useful as an index for BDM treatment efficacy and prognosis.

15.
Ther Adv Neurol Disord ; 17: 17562864241239117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616782

RESUMEN

Multiple sclerosis (MS) was defined as a rare disease in China due to its low prevalence. For a long time, interferon ß was the only approved disease-modifying therapy (DMT). Since the first oral DMT was approved in 2018, DMT approval accelerated, and seven DMTs were approved within 5 years. With an increasing number of DMTs being prescribed in clinical practice, it is necessary to discuss the standardized MS treatment algorithms depending on the disease activity and DMT availability. In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country.


Treatment algorithms of relapsing multiple sclerosis in China In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country: 1) CIS and RRMS account for more than 90% of the MS patients and most of them are mild to moderate; 2) MS patients should initiate DMT treatments as soon as the disease has been diagnosed in order to reduce the risk of disease progression; 3) Patients who have been diagnosed with MS should start treatment with fundamental DMTs unless the disease course has been highly active; 4) MAGNIMS score may be a suitable and simplified assessment tool for measuring treatment response to DMTs; 5) Patients treated with corticosteroids and NSIS should be switched to the standardized DMT treatment during remission in accordance with disease activity.

16.
Andrology ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639009

RESUMEN

BACKGROUND: A decrease in semen volume among men is comparable to the rising prevalence of obesity worldwide. The anabolic hormone insulin-like growth factor-1 (IGF-1) can promote proliferation and differentiation in cultured mouse spermatogonial stem cells and alleviate abnormal in vitro spermatogenesis. Additionally, serum IGF-1 level is negatively correlated with body mass index. Whereas the role of IGF-1 in the sperm production in obese men remains unclear. OBJECTIVE: To investigate the therapeutic effect and potential mechanism of IGF-1 on spermatogenesis of high-fat diet (HFD)-induced obesity mice. METHODS: An HFD-induced obesity mouse model was established. Alterations in testicular morphology, sperm count, proliferation, and apoptosis were observed by H&E staining,immunohistochemistry, immunofluorescence, and Western blotting. Exogenous recombinant IGF-1 was administered to obese mice to investigate the correlations between altered testicular IGF-1 levels and sperm production. RESULTS: The sperm count was reduced, the testicular structure was disordered, and sex hormone levels were abnormal in HFD-fed mice compared with normal diet-fed mice. The expression of proliferation-related antigens such as proliferating cell nuclear antigen (PCNA) and Ki-67 was decreased, while that of proapoptotic proteins such as c-caspase3 was increased in testes from HFD-fed mice. Most importantly, the phosphorylation of insulin-like growth factor-1 receptor (IGF-1R) in testes was decreased due to reductions in IGF-1 from hepatocytes and Sertoli cells. Recombinant IGF-1 alleviated these functional impairments by promoting IGF-1R, Akt, and Erk1/2 phosphorylation in the testes. CONCLUSIONS: Insufficient IGF-1/IGF-1R signaling is intimately linked to damaged sperm production in obese male mice. Exogenous IGF-1 can improve survival and proliferation as well as sperm production. This study provides a novel theoretical basis and a target for the treatment of obese men with oligozoospermia.

17.
Front Neuroinform ; 18: 1354436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566773

RESUMEN

Epileptic seizures are characterized by their sudden and unpredictable nature, posing significant risks to a patient's daily life. Accurate and reliable seizure prediction systems can provide alerts before a seizure occurs, as well as give the patient and caregivers provider enough time to take appropriate measure. This study presents an effective seizure prediction method based on deep learning that combine with handcrafted features. The handcrafted features were selected by Max-Relevance and Min-Redundancy (mRMR) to obtain the optimal set of features. To extract the epileptic features from the fused multidimensional structure, we designed a P3D-BiConvLstm3D model, which is a combination of pseudo-3D convolutional neural network (P3DCNN) and bidirectional convolutional long short-term memory 3D (BiConvLstm3D). We also converted EEG signals into a multidimensional structure that fused spatial, manual features, and temporal information. The multidimensional structure is then fed into a P3DCNN to extract spatial and manual features and feature-to-feature dependencies, followed by a BiConvLstm3D input to explore temporal dependencies while preserving the spatial features, and finally, a channel attention mechanism is implemented to emphasize the more representative information in the multichannel output. The proposed has an average accuracy of 98.13%, an average sensitivity of 98.03%, an average precision of 98.30% and an average specificity of 98.23% for the CHB-MIT scalp EEG database. A comparison of the proposed model with other baseline methods was done to confirm the better performance of features through time-space nonlinear feature fusion. The results show that the proposed P3DCNN-BiConvLstm3D-Attention3D method for epilepsy prediction by time-space nonlinear feature fusion is effective.

18.
Microbiome ; 12(1): 77, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664737

RESUMEN

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Asunto(s)
Bacterias , Metagenómica , Nutrientes , Peptidoglicano , Fitoplancton , Polisacáridos , Agua de Mar , Polisacáridos/metabolismo , Agua de Mar/microbiología , Fitoplancton/metabolismo , Fitoplancton/genética , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota
19.
Bioresour Technol ; 401: 130734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670288

RESUMEN

Currently, the predominant method for the industrial production of 1,3-dihydroxyacetone (DHA) from glycerol involves fed-batch fermentation. However, previous research has revealed that in the biocatalytic synthesis of DHA from glycerol, when the DHA concentration exceeded 50 g·L-1, it significantly inhibited microbial growth and metabolism, posing a challenge in maintaining prolonged and efficient catalytic production of DHA. In this study, a new integrated continuous production and synchronous separation (ICSS) system was constructed using hollow fiber columns and perfusion culture technology. Additionally, a cell reactivation technique was implemented to extend the biocatalytic ability of cells. Compared with fed-batch fermentation, the ICSS system operated for 360 h, yielding a total DHA of 1237.8 ± 15.8 g. The glycerol conversion rate reached 97.7 %, with a productivity of 3.44 g·L-1·h-1, representing 485.0 % increase in DHA production. ICSS system exhibited strong operational characteristics and excellent performance, indicating significant potential for applications in industrial bioprocesses.


Asunto(s)
Reactores Biológicos , Células Inmovilizadas , Dihidroxiacetona , Glicerol , Dihidroxiacetona/metabolismo , Células Inmovilizadas/metabolismo , Glicerol/metabolismo , Fermentación , Técnicas de Cultivo Celular por Lotes/métodos , Perfusión , Catálisis , Biocatálisis
20.
Nano Lett ; 24(18): 5481-5489, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38639407

RESUMEN

Natural killer (NK) cells have become a powerful candidate for adoptive tumor immunotherapy, while their therapeutic efficacy in solid tumors remains unsatisfactory. Here, we developed a hybrid module with an injectable hydrogel and hydroxyapatite (HAp) nanobelts for the controlled delivery of NK cells to enhance the therapy of solid tumors. Surface-functionalized HAp nanobelts modified with agonistic antibodies against NKG2D and 4-1BB and cytokines IL-2 and IL-21 support survival and dynamic activation. Thus, the HAp-modified chitosan (CS) thermos-sensitive hydrogel not only improved the retention of NK cells for more than 20 days in vivo but also increased NK cell function by more than one-fold. The unique architecture of this biomaterial complex protects NK cells from the hostile tumor environment and improves antitumor efficacy. The generation of a transient inflammatory niche for NK cells through a biocompatible hydrogel reservoir may be a conversion pathway to prevent cancer recurrence of resectable tumors.


Asunto(s)
Hidrogeles , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Animales , Ratones , Hidrogeles/química , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Durapatita/química , Línea Celular Tumoral , Quitosano/química , Subfamilia K de Receptores Similares a Lectina de Células NK , Interleucinas/inmunología , Interleucina-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA