Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003077

RESUMEN

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Asunto(s)
Metalurgia , Exposición Profesional , Humanos , Exposición Profesional/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Metales/orina , Metales/análisis , Medición de Riesgo , Arsénico/análisis , Monitoreo del Ambiente , Adulto , Contaminantes Ambientales/análisis , Persona de Mediana Edad
2.
J Environ Sci (China) ; 149: 688-698, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181679

RESUMEN

Coking industry is a potential source of heavy metals (HMs) pollution. However, its impacts to the groundwater of surrounding residential areas have not been well understood. This study investigated the pollution characteristics and health risks of HMs in groundwater nearby a typical coking plant. Nine HMs including Fe, Zn, Mo, As, Cu, Ni, Cr, Pb and Cd were analyzed. The average concentration of total HMs was higher in the nearby area (244.27 µg/L) than that of remote area away the coking plant (89.15 µg/L). The spatial distribution of pollution indices including heavy metal pollution index (HPI), Nemerow index (NI) and contamination degree (CD), all demonstrated higher values at the nearby residential areas, suggesting coking activity could significantly impact the HMs distribution characteristics. Four sources of HMs were identified by Positive Matrix Factorization (PMF) model, which indicated coal washing and coking emission were the dominant sources, accounted for 40.4%, and 31.0%, respectively. Oral ingestion was found to be the dominant exposure pathway with higher exposure dose to children than adults. Hazard quotient (HQ) values were below 1.0, suggesting negligible non-carcinogenic health risks, while potential carcinogenic risks were from Pb and Ni with cancer risk (CR) values > 10-6. Monte Carlo simulation matched well with the calculated results with HMs concentrations to be the most sensitive parameters. This study provides insights into understanding how the industrial coking activities can impact the HMs pollution characteristics in groundwater, thus facilitating the implement of HMs regulation in coking industries.


Asunto(s)
Coque , Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos
3.
Int J Biol Macromol ; 279(Pt 4): 135478, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39250988

RESUMEN

Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 µM) and wide detection range (10-300 µM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.


Asunto(s)
Quitosano , Escherichia coli , Colorantes Fluorescentes , Hierro , Colorantes Fluorescentes/química , Quitosano/química , Hierro/análisis , Hierro/química , Staphylococcus aureus , Bases de Schiff/química , Espectrometría de Fluorescencia/métodos , Antibacterianos/farmacología , Antibacterianos/análisis , Antibacterianos/química , Técnicas Biosensibles/métodos
4.
Environ Sci Technol ; 58(40): 17937-17947, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39250882

RESUMEN

Bacterial antibiotic resistance has recently attracted increasing amounts of attention. Here, an artificially antibiotic-resistant bacterial community (ARBC) combined with five different constructed antibiotic-resistant bacteria (ARB) with single antibiotic resistance, namely, kanamycin (KAN), tetracycline (TET), cefotaxime (CTX), polymyxin B (PB), or gentamicin (GEM), was studied for the stress response to photocatalysis. With photocatalytic inactivation, the transfer and diffusion of antibiotic resistance genes (ARGs) in the ARBC decreased, and fewer multidrug-resistant bacteria (MDRB) emerged in aquatic environments. After several days of photocatalytic inactivation or Luria broth cultivation, >90% ARB were transformed to antibiotic-susceptible bacteria by discarding ARGs. Bacteria with double antibiotic resistance were the dominant species (99%) of residual ARB. The changes in ARG abundance varied, decreasing for the GEM and TET resistance genes and increasing for the KAN resistance genes. The change in the antibiotic resistance level was consistent with the change in ARG abundance. Correspondingly, point mutations occurred for the KAN, CTX and PB resistance genes after photocatalytic inactivation, which might be the reason why these genes persisted longer in the studied ARBC. In summary, photocatalytic inactivation could reduce the abundance of some ARGs and inhibit the emergence of MDRB as well as block ARG transfer in the bacterial community in aquatic environments. This work highlights the advantages of long-term photocatalytic inactivation for controlling antibiotic resistance and facilitates a better understanding of bacterial communities in real aquatic environments.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Catálisis
5.
J Hazard Mater ; 480: 135901, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39305601

RESUMEN

Microplastics (MPs) has been concerned as emerging vectors for spreading antibiotic resistance and pathogenicity in aquatic environments, but the role of biodegradable MPs remains largely unknown. Herein, field in-situ incubation method combined with metagenomic sequencing were employed to reveal the dispersal characteristics of microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and virulence factors (VFs) enriched by MPs biofilms. Results showed that planktonic microbes were more prone to enrich on biodegradable MPs (i.e., polyhydroxyalkanoate and polylactic acid) than non-biodegradable MPs (i.e., polystyrene, polypropylene and polyethylene). Distinctive microbial communities were assembled on biodegradable MPs, and the abundances of ARGs, MGEs, and VFs on biofilms of biodegradable MPs were much higher than that of non-biodegradable MPs. Notably, network analysis showed that the biodegradable MPs selectively enriched pathogens carrying ARGs, VFs and MGEs concurrently, suggesting a strong potential risks of co-spreading antibiotic resistance and pathogenicity through horizontal gene transfer. According to WHO priority list of Antibiotic Resistant Pathogens (ARPs) and ARGs health risk assessment framework, the highest abundances of Priority 1 ARPs and Rank I risk ARGs were found on polylactic acid and polyhydroxyalkanoate, respectively. These findings elucidate the unique and critical role of biodegradable MPs for selective enrichment of high-risk ARGs and priority pathogens in freshwater environments.

6.
Fish Shellfish Immunol ; 154: 109872, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244075

RESUMEN

Scylla paramamosain, an economically significant crab, is widely cultivated worldwide. In recent years, S. paramamosain has faced a serious threat from viral diseases due to the expansion of culture scale and increased culture density. Among these, mud crab dicistrovirus-1 (MCDV-1) stands out as highly pathogenic, presenting substantial challenges to the healthy development of mud crab aquaculture. Therefore, a comprehensive understanding of the mud crab immune response to MCDV-1 infection is imperative for devising effective disease prevention strategies. In this study, transcriptomic analyses were conducted on the hepatopancreas of mud crabs infected with MCDV-1. The findings revealed a total of 5139 differentially expressed genes (DEGs) between healthy and MCDV-1 infected mud crabs, including 3327 upregulated and 1812 downregulated DEGs. Further analysis showed that mud crabs resist MCDV-1 infection by activating humoral immune-related pathways, including the MAPK signaling pathway, MAPK signaling pathway-fly, and Toll and Imd signaling pathway. In contrast, MCDV-1 infection triggers host metabolic disorders. Several immune-related vitamin metabolism pathways (ascorbate and aldarate metabolism, retinol metabolism, and nicotinate and nicotinamide metabolism) were significantly inhibited, which may create favorable conditions for the virus's self-replication. Notably, endocytosis emerged as significantly upregulated both in GO terms and KEGG pathways, with several viral endocytosis-related pathways showing significant activation. PPI network analysis identified 9 hub genes associated with viral endocytosis within the endocytosis. Subsequent GeneMANIA analysis confirmed the association of these hub genes with viral endocytosis. Both transcriptome data and qPCR analysis revealed a significant upregulation of these hub genes post MCDV-1 infection, suggesting MCDV-1 may use viral endocytosis to enter cells and facilitate replication. This study represents the first comprehensive report on the transcriptomic profile of mud crab hepatopancreas response to MCDV-1 infection. Future investigations should focus on elucidating the mechanisms through which MCDV-1 enters cells via endocytosis, as this may holds critical implications for the development of vaccine targets.

7.
Environ Pollut ; 361: 124881, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233270

RESUMEN

In residential environment, NO2 is an important air pollutant. Yet, the dynamics of indoor NO2 and source contributions to human exposure are not well understood. Here, we conducted a continuous NO2 measurement in and out of eight households in Guangzhou, China. Paired high time-resolution NO2 data sets indoors (kitchen, living room) and outdoors (balcony) were obtained with NO2 monitors. We summarized the indoor and outdoor NO2 levels, identified temporal variation patterns, analyzed indoor-outdoor relationships, and quantified source contributions to indoor NO2 exposure. Indoor NO2 were overall higher than outdoor NO2, and in most cases, the highest NO2 levels were observed in the kitchen. NO2 in the kitchen was characterized by multiple spikes associated with use of gas stoves, while NO2 in the living room was also elevated but the peaks were generally smaller. The indoor-outdoor correlations were stronger in winter than in summer, and were stronger in nighttime than daytime. The sources contributing to indoor NO2 were separated with a conceptual model. Overall, the outdoor NO2 source contributed 73%-76% of the NO2 in the kitchen, and 76%-85% in the living room. The source pattern was quite different: outdoor NO2 sources were present indoors all the time; by contrast, indoor NO2 sources were present sporadically but with a very high contribution. This has important implication to the exposure assessment that indoor NO2 sources lead to short-term high exposure, and deserves attention regarding acute health effects.

8.
Ann Med ; 56(1): 2381085, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39099020

RESUMEN

BACKGROUND: Rat models are valuable tools to study the lung microbiota in diseases. Yet the impacts of different lung parts, young and mature adult stages, and the different batches of the same conditions on the healthy rat lung microbiome have not been investigated. METHODS: The rat lung microbiome was analyzed to clarify the lung part-dependent and age-dependent differences and to evaluate the effects of several 'batch environmental factors' on normal rats, after eliminating potential contamination. RESULTS: The results showed that the contamination could be identified and excluded. The lung microbiome from left and right lung parts was very similar so one representative part could be used in the microbiome study. There were significantly different lung microbial communities between the young and mature adult groups, and also between the different feeding batches groups of the same repetitive feeding conditions, but a common lung microbiota characterized by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria as the most dominant phyla were present in all adult rats. It indicated that the experiment under the same condition of the same rats batch was needed to compare the difference in the lung microbiota and repeated experiments were necessary to confirm the results. CONCLUSION: These data represented that the lung bacterial communities were dynamic and rapidly susceptible to environmental influence, clustered strongly by age or different feeding batches but similar in the different lung tissue parts. This study improved the basic understanding of the potential effects on the lung microbiome of healthy rats.


Asunto(s)
Pulmón , Microbiota , Animales , Pulmón/microbiología , Ratas/microbiología , Masculino , Factores de Edad , Ratas Sprague-Dawley , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética
9.
Environ Int ; 190: 108927, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39121826

RESUMEN

In the context of pandemic viruses and pathogenic bacteria, triclosan (TCS), as a typical antibacterial agent, is widely used around the world. However, the health risks from TCS increase with exposure, and it is widespread in environmental and human samples. Notably, environmental transformation and human metabolism could induce potentially undesirable risks to humans, rather than simple decontamination or detoxification. This review summarizes the environmental and human exposure to TCS covering from 2004 to 2023. Particularly, health impacts from the environmental and metabolic transformation of TCS are emphasized. Environmental transformations aimed at decontamination are recognized to form carcinogenic products such as dioxins, and ultraviolet light and excessive active chlorine can promote the formation of these dioxin congeners, potentially threatening environmental and human health. Although TCS can be rapidly metabolized for detoxification, these processes can induce the formation of lipophilic ether metabolic analogs via cytochrome P450 catalysis, causing possible adverse cross-talk reactions in human metabolic disorders. Accordingly, TCS may be more harmful in environmental transformation and human metabolism. In particular, TCS can stimulate the transmission of antibiotic resistance even at trace levels, threatening public health. Considering these accruing epidemiological and toxicological studies indicating the multiple adverse health outcomes of TCS, we call on environmental toxicologists to pay more attention to the toxicity evolution of TCS during environmental transformation and human metabolism.


Asunto(s)
Triclosán , Triclosán/metabolismo , Triclosán/toxicidad , Humanos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/toxicidad , Pandemias
10.
Fundam Res ; 4(4): 941-950, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39156574

RESUMEN

Neural network pruning is a popular approach to reducing the computational complexity of deep neural networks. In recent years, as growing evidence shows that conventional network pruning methods employ inappropriate proxy metrics, and as new types of hardware become increasingly available, hardware-aware network pruning that incorporates hardware characteristics in the loop of network pruning has gained growing attention. Both network accuracy and hardware efficiency (latency, memory consumption, etc.) are critical objectives to the success of network pruning, but the conflict between the multiple objectives makes it impossible to find a single optimal solution. Previous studies mostly convert the hardware-aware network pruning to optimization problems with a single objective. In this paper, we propose to solve the hardware-aware network pruning problem with Multi-Objective Evolutionary Algorithms (MOEAs). Specifically, we formulate the problem as a multi-objective optimization problem, and propose a novel memetic MOEA, namely HAMP, that combines an efficient portfolio-based selection and a surrogate-assisted local search, to solve it. Empirical studies demonstrate the potential of MOEAs in providing simultaneously a set of alternative solutions and the superiority of HAMP compared to the state-of-the-art hardware-aware network pruning method.

11.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972937

RESUMEN

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

12.
Environ Int ; 190: 108857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954924

RESUMEN

Bioaerosols are more likely to accumulate in the residential environment, and long-term inhalation may lead to a variety of diseases and allergies. Here, we studied the distribution, influencing factors and diffusion characteristics of indoor and outdoor microbiota pollution in six residential buildings in Guangzhou, southern China over a period of one year. The results showed that the particle sizes of bioaerosol were mainly in the range of inhalable particle size (<4.7 µm) with a small difference among four seasons (74.61 % ± 2.17 %). The microbial communities showed obvious seasonal differences with high abundance in summer, but no obvious geographical differences. Among them, the bacteria were more abundant than the fungi. The dominant microbes in indoor and outdoor environments were similar, with Anoxybacillu, Brevibacillus and Acinetobacter as the dominant bacteria, and Cladosporium, Penicillium and Alternaria as the dominant fungi. The airborne microbiomes were more sensitive to temperature and particulate matter (PM2.5, PM10) concentrations. Based on the Sloan neutral model, bacteria were more prone to random diffusion than fungi, and the airborne microbiome can be randomly distributed in indoor and outdoor environments and between the two environments in each season. Bioaerosol in indoor was mainly from outdoor. The health risk evaluation showed that the indoor inhalation risks were higher than those outdoor. The air purifier had a better removal efficiency on 1.1-4.7 µm microorganisms, and the removal efficiency on Gram-negative bacteria was better than that on Gram-positive bacteria. This study is of great significance for the risk assessment and control of residential indoor bioaerosol exposure.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Bacterias , Hongos , Microbiota , Material Particulado , Estaciones del Año , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , China , Hongos/aislamiento & purificación , Bacterias/aislamiento & purificación , Bacterias/clasificación , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Monitoreo del Ambiente , Vivienda , Aerosoles/análisis , Humanos
13.
J Hazard Mater ; 476: 135121, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981233

RESUMEN

Pollution of the aqueous environment by volatile organic compounds (VOCs) has caused increasing concerns. However, the occurrence and risks of aqueous VOCs in oil exploitation areas remain unclear. Herein, spatial distribution, migration flux, and environmental risks of VOCs in complex surface waters (including River, Estuary, Offshore and Aquaculture areas) were investigated at a typical coastal oil exploitation site. Among these surface waters, River was the most polluted area, and 1,2-Dichloropropane-which emerges from oil extraction activities-was the most prevalent VOC. Positive matrix factorization showed that VOCs pollution sources changed from oil exploitation to offshore disinfection activities along River, Estuary, Offshore and Aquaculture areas. Annual volatilization of VOCs to the atmosphere was predicted to be ∼34.42 tons, and rivers discharge ∼23.70 tons VOCs into the Bohai Sea annually. Ecological risk assessment indicated that Ethylbenzene and Bromochloromethane posed potential ecological risks to the aquatic environment, while olfactory assessment indicated that VOCs in surface waters did not pose an odor exposure risk. This study provides the first assessment of the pollution characteristics of aqueous VOCs in complex aqueous environments of oil exploitation sites, highlighting that oil exploitation activities can have nonnegligible impacts on VOCs pollution profiles.

14.
Sci Total Environ ; 948: 174924, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047835

RESUMEN

Volatile organic compounds (VOCs) are widespread harmful atmospheric pollutants, which have long been concerned and elucidated to be one of the risks of acute and chronic diseases for human, such as leukemia and cancer. Although numerous scientific studies have documented the potential adverse outcomes caused by VOC exposure, the mechanisms which biological response pathways of these VOC disruption remain poorly understood. Therefore, the identification of biochemical markers associated with metabolism, health effects and diseases orientation can be an effective means of screening biological targets for VOC exposure, which provide evidences to the toxicity assessment of compounds. The current review aims to understand the mechanisms underlying VOCs-elicited adverse outcomes by charactering various types of biomarkers. VOCs-related biomarkers from three aspects were summarized through in vitro, animal and epidemiological studies. i) Unmetabolized and metabolized VOC biomarkers in human samples for assessing exposure characteristics in different communities; ii) Adverse endpoint effects related biomarkers, mainly including (anti)oxidative stress, inflammation response and DNA damage; iii) Omics-based molecular biomarkers alteration in gene, protein, lipid and metabolite aspects associated with biological signaling pathway disorders response to VOC exposure. Further research, advanced machine learning and bioinformation approaches combined with experimental results are urgently needed to ascertain the selection of biomarkers and further illuminate toxic mechanisms of VOC exposure. Finally, VOCs-induced disease causes can be predicted with proven results.


Asunto(s)
Contaminantes Atmosféricos , Biomarcadores , Compuestos Orgánicos Volátiles , Biomarcadores/metabolismo , Humanos , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales , Animales , Estrés Oxidativo
15.
Water Res ; 262: 122137, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059198

RESUMEN

Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Percepción de Quorum , Staphylococcus aureus , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Catálisis , Antibacterianos/farmacología , Lactonas/metabolismo , Homoserina/análogos & derivados , Microbiología del Agua , Rayos Ultravioleta
16.
Fundam Res ; 4(3): 442-454, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933213

RESUMEN

The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.

17.
Adv Sci (Weinh) ; 11(32): e2400149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898748

RESUMEN

The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) and its adaptor, stimulator of interferon genes (STING), is known to reprogram the immunosuppressive tumor microenvironment for promoting antitumor immunity. To enhance the efficiency of cGAS-STING pathway activation, macrophage-selective uptake, and programmable cytosolic release are crucial for the delivery of STING agonists. However, existing polymer- or lipid-based delivery systems encounter difficulty in integrating multiple functions meanwhile maintaining precise control and simple procedures. Herein, inspired by cGAS being a natural DNA sensor, a modularized DNA nanodevice agonist (DNDA) is designed that enable macrophage-selective uptake and programmable activation of the cGAS-STING pathway through precise self-assembly. The resulting DNA nanodevice acts as both a nanocarrier and agonist. Upon local administration, it demonstrates the ability of macrophage-selective uptake, endosomal escape, and cytosolic release of the cGAS-recognizing DNA segment, leading to robust activation of the cGAS-STING pathway and enhanced antitumor efficacy. Moreover, DNDA elicits a synergistic therapeutic effect when combined with immune checkpoint blockade. The study broadens the application of DNA nanotechnology as an immune stimulator for cGAS-STING activation.


Asunto(s)
ADN , Inmunoterapia , Macrófagos , Proteínas de la Membrana , Nucleotidiltransferasas , Animales , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Ratones , Inmunoterapia/métodos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , ADN/inmunología , Nucleotidiltransferasas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Humanos , Modelos Animales de Enfermedad , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico
18.
ACS Appl Mater Interfaces ; 16(27): 34720-34731, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38934381

RESUMEN

Anti-inflammatory and angiogenesis are two important factors in wound healing. Wound dressings with anti-inflammation and vascularization are essential to address complex interventions, expensive treatments, and uncontrolled release mechanisms. Based on the above considerations, we designed a near-infrared (NIR)-responsive hydrogel dressing, which is composed of mPDA-DFO@LA nanoparticles (mPDA: dopamine hydrochloride nanoparticles, DFO: deferoxamine, LA: lauric acid), valsartan (abbreviated as Va), and dopamine-hyaluronic acid hydrogel. The hydrogel dressing demonstrated injectability, bioadhesive, and photothermal properties. The results indicated the obtained dressing by releasing Va can appropriately regulate macrophage phenotype transformation from M1 to M2, resulting in an anti-inflammatory environment. In addition, DFO encapsulated by LA can be sustainably released into the wound site by NIR irradiation, which further prevents excessive neovascularization. Notably, the results in vivo indicated the mPDA-DFO@LA/Va hydrogel dressing significantly enhanced wound recovery, achieving a healing rate of up to 96% after 11 days of treatment. Therefore, this NIR-responsive hydrogel dressing with anti-inflammation, vascularization, and on-demand programmed drug release will be a promising wound dressing for wound infection.


Asunto(s)
Antiinflamatorios , Vendajes , Hidrogeles , Nanocompuestos , Cicatrización de Heridas , Animales , Ratones , Angiogénesis/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Deferoxamina/química , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Dopamina/química , Dopamina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Rayos Infrarrojos , Ácidos Láuricos/química , Ácidos Láuricos/farmacología , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Células RAW 264.7 , Cicatrización de Heridas/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38702154

RESUMEN

Background: The objective of this study was to investigate the relationship between vascular calcification, serum lncRNA H19, and Runt-Related Transcription Factor 2 mRNA expression in patients with uremia. Methods: This study is a retrospective study which recruited 146 patients with uremia on dialysis from December 2021 to November 2022. Participants were divided into the VC and non-VC groups based on their chest X-ray calcification ratings. General and clinical data were collected from all patients. Serum H19, Runx2 mRNA, mineral bone disease effectors, and other blood markers were tested. Univariate analysis was performed to compare the changes in each clinical index between these two groups of patients. A multi-factor logistic regression analysis of risk factors for VC was performed. Receiver operating characteristics analyzed the H19 and Runx2 for their diagnostic values for VC. Pearson's test was used to analyze the correlation between the H19 and Runx2 expression and the factors influencing VC. Results: Patients in the VC group had significantly higher creatinine, serum phosphorus, calcium, BMP-2, FGF-23, OPG, and iPTH levels than those in the non-VC group (P < .05), while their albumin levels were significantly lower than those in the non-VC group (P < .05). The expression of H19 and Runx2 mRNA was significantly upregulated in the serum of VC patients (P < .05). H19 was significantly positively correlated with creatinine, serum phosphorus, calcium, BMP-2, OPG, and iPTH (P < .05). Runx2 mRNA was significantly positively correlated with creatinine, FGF-23, and iPTH (P < .05 ), while there was no significant correlation with other factors(P > .05). Albumin, BMP-2, iPTH, H19, and Runx2 were independent correlative-factors of uremic VC. In addition, the combined H19 and Runx2 test (AUC=0.850; 95% CI: 0.781-0.903) had good diagnostic values for the development of VC. Conclusion: Serum H19 and Runx2 levels are significantly associated with VC-related factors and are independent risk factors for uremic VC, and their levels contribute to the diagnosis of uremic VC.

20.
Environ Int ; 187: 108704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692150

RESUMEN

With the rapid growth of aquaculture globally, large amounts of antibiotics have been used to treat aquatic disease, which may accelerate induction and spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquaculture environments. Herein, metagenomic and 16S rRNA analyses were used to analyze the potentials and co-occurrence patterns of pathogenome (culturable and unculturable pathogens), antibiotic resistome (ARGs), and mobilome (mobile genetic elements (MGEs)) from mariculture waters near 5000 km coast of South China. Total 207 species of pathogens were identified, with only 10 culturable species. Furthermore, more pathogen species were detected in mariculture waters than those in coastal waters, and mariculture waters were prone to become reservoirs of unculturable pathogens. In addition, 913 subtypes of 21 ARG types were also identified, with multidrug resistance genes as the majority. MGEs including plasmids, integrons, transposons, and insertion sequences were abundantly present in mariculture waters. The co-occurrence network pattern between pathogenome, antibiotic resistome, and mobilome suggested that most of pathogens may be potential multidrug resistant hosts, possibly due to high frequency of horizontal gene transfer. These findings increase our understanding of mariculture waters as reservoirs of antibiotic resistome and mobilome, and as yet another hotbed for creation and transfer of new antibiotic-resistant pathogenome.


Asunto(s)
Antibacterianos , Acuicultura , Bacterias , ARN Ribosómico 16S , Bacterias/genética , Bacterias/efectos de los fármacos , Antibacterianos/farmacología , ARN Ribosómico 16S/genética , China , Microbiología del Agua , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal , Farmacorresistencia Microbiana/genética , Metagenómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA