Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Robot Surg ; 18(1): 312, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110315

RESUMEN

High-performance miniature surgical instruments play an important role in complicated minimally invasive surgery (MIS). Based on in-depth analysis of the requirements of MIS and the characteristics of the existing minimally invasive surgical instruments, a multiple degrees of freedom (DOF) robotic surgical instrument with decoupled pose was proposed. Firstly, the design concept of the pose decoupling instrument was described in detail, and its physical structure, transmission structure, and mechanical properties were designed and analyzed. A surgical instrument control algorithm based on the master-slave mode was established. Finally, a physical prototype was developed, and its motion ranges of joints, load capacity, and suture operation performance were comprehensively evaluated, which confirmed the effectiveness of the proposed minimally invasive robotic surgical instrument.


Asunto(s)
Diseño de Equipo , Procedimientos Quirúrgicos Mínimamente Invasivos , Procedimientos Quirúrgicos Robotizados , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Humanos , Algoritmos , Instrumentos Quirúrgicos
2.
J Nanobiotechnology ; 22(1): 484, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138477

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a progressive and debilitating inflammatory disease of the gastrointestinal tract (GIT). Despite recent advances, precise treatment and noninvasive monitoring remain challenging. METHODS: Herein, we developed orally-administered, colitis-targeting and hyaluronic acid (HA)-modified, core-shell curcumin (Cur)- and cerium oxide (CeO2)-loaded nanoprobes (Cur@PC-HA/CeO2 NPs) for computed tomography (CT) imaging-guided treatment and monitoring of IBD in living mice. RESULTS: Following oral administration, high-molecular-weight HA maintains integrity with little absorption in the upper GIT, and then actively accumulates at local colitis sites owing to its colitis-targeting ability, leading to specific CT enhancement lasting for 24 h. The retained NPs are further degraded by hyaluronidase in the colon to release Cur and CeO2, thereby exerting anti-inflammatory and antioxidant effects. Combined with the ability of NPs to regulate intestinal flora, the oral NPs result in substantial relief in symptoms. Following multiple treatments, the gradually decreasing range of the colon with high CT attenuation correlates with the change in the clinical biomarkers, indicating the feasibility of treatment response and remission. CONCLUSION: This study provides a proof-of-concept for the design of a novel theranostic integration strategy for concomitant IBD treatment and the real-time monitoring of treatment responses.


Asunto(s)
Cerio , Curcumina , Ácido Hialurónico , Enfermedades Inflamatorias del Intestino , Nanopartículas , Nanomedicina Teranóstica , Animales , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ratones , Cerio/química , Curcumina/farmacología , Curcumina/química , Curcumina/uso terapéutico , Nanomedicina Teranóstica/métodos , Administración Oral , Nanopartículas/química , Ácido Hialurónico/química , Hialuronoglucosaminidasa/metabolismo , Tomografía Computarizada por Rayos X , Ratones Endogámicos C57BL , Colon/diagnóstico por imagen , Colon/patología , Colon/metabolismo , Humanos , Colitis/tratamiento farmacológico
3.
JMIR Med Inform ; 12: e55090, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094109

RESUMEN

BACKGROUND: Knowledge graphs (KGs) can integrate domain knowledge into a traditional Chinese medicine (TCM) intelligent syndrome differentiation model. However, the quality of current KGs in the TCM domain varies greatly, related to the lack of knowledge graph completion (KGC) and evaluation methods. OBJECTIVE: This study aims to investigate KGC and evaluation methods tailored for TCM domain knowledge. METHODS: In the KGC phase, according to the characteristics of TCM domain knowledge, we proposed a 3-step "entity-ontology-path" completion approach. This approach uses path reasoning, ontology rule reasoning, and association rules. In the KGC quality evaluation phase, we proposed a 3-dimensional evaluation framework that encompasses completeness, accuracy, and usability, using quantitative metrics such as complex network analysis, ontology reasoning, and graph representation. Furthermore, we compared the impact of different graph representation models on KG usability. RESULTS: In the KGC phase, 52, 107, 27, and 479 triples were added by outlier analysis, rule-based reasoning, association rules, and path-based reasoning, respectively. In addition, rule-based reasoning identified 14 contradictory triples. In the KGC quality evaluation phase, in terms of completeness, KG had higher density and lower sparsity after completion, and there were no contradictory rules within the KG. In terms of accuracy, KG after completion was more consistent with prior knowledge. In terms of usability, the mean reciprocal ranking, mean rank, and hit rate of the first N tail entities predicted by the model (Hits@N) of the TransE, RotatE, DistMult, and ComplEx graph representation models all showed improvement after KGC. Among them, the RotatE model achieved the best representation. CONCLUSIONS: The 3-step completion approach can effectively improve the completeness, accuracy, and availability of KGs, and the 3-dimensional evaluation framework can be used for comprehensive KGC evaluation. In the TCM field, the RotatE model performed better at KG representation.

4.
Front Pharmacol ; 15: 1431221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101144

RESUMEN

Glycyrrhiza uralensis polysaccharides (GUPS) are widely applied in biomedicine and functional food due to their multiple pharmacological activities and low toxicity. Despite their widespread use, the in vivo metabolic profile of GUPS remains poorly understood. To address this gap, we developed a quantitative analysis method that involves labeling GUPS with visible fluorescein (5-DTAF) and near-infrared (NIR) fluorescein (Cy7), resulting in stable conjugates with substitution degrees of 0.81% for 5-DTAF and 0.39% for Cy7. The pharmacokinetic studies showed a biphasic elimination pattern in the blood concentration-time curve following both intravenous and oral administration, consistent with a two-compartment model. Using fluorescence quantification and NIR imaging, we observed that GUPS was distributed to various tissues, exhibiting higher concentrations particularly in liver, kidney and lung. Excretion studies indicated that feces were the major excretion pathway of GUPS after oral administration (60.98%), whereas urine was the main pathway after intravenous administration (31.16%). Notably, GUPS could be absorbed rapidly by gut (Tmax 1 ± 0.61 h) and showed a biological half-time t1/2 26.4 ± 7.72 h after oral administration. Furthermore, the Caco-2 cells uptake studies illustrated that macropinocytosis and clathrin-mediated endocytosis were participated in the transport of GUPS in intestine epithelium. This comprehensive analysis of the in vivo pharmacokinetics of GUPS not only enhances our understanding of its metabolic pathways but also establishes a foundational basis for its clinical application, optimizing its therapeutic potential and safety profile.

5.
Clin Cosmet Investig Dermatol ; 17: 1527-1541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948922

RESUMEN

Purpose: This study seeks to investigate the effect of evodiamine on psoriasis and psoriatic pruritus. Methods: Imiquimod-induced psoriasiform dermatitis in mice was used as a model, and evodiamine was topically applied for seven days. The mice were observed daily for skin damage on the back, clinical score and their scratching behavior was recorded. Blood samples were collected on the final day of the experiment, and the serum levels of pruritus-associated inflammatory cytokines tumor necrosis factor (TNF) -α, interleukin (IL) -23, and IL-17A were measured using enzyme-linked immunosorbent assay. Histopathological changes were observed in Hematoxylin and Eosin-stained skin specimens. The expression levels of transient receptor potential vanilloid (TRPV) 1, TRPV3, TRPV4, and the pruritus-related mediators Substance P (SP), nerve growth factor (NGF), and calcitonin gene-related peptide (CGRP) in the skin lesions were analyzed using Western blot and qRT-PCR. The effect of evodiamine on the exploratory behavior, motor, and coordination abilities of mice was assessed using open field, suspension, and Rota-Rod experiments. Molecular docking was utilized to verify the binding of evodiamine to the residues of TRPV1, TRPV3, and TRPV4. Results: Evodiamine reduced pruritus and inhibited inflammation by decreasing the levels of inflammatory mediators TNF-α, IL-23, and IL-17A in the serum of Imiquimod-induced mice and attenuated the mRNA and protein expression levels of SP, NGF, CGRP, TRPV1, TRPV3, and TRPV4 in the skin. Conclusion: Evodiamine is an effective treatment for psoriasis and pruritus, due to its ability to inhibit immune inflammation and pruritic mediators.

6.
Animal Model Exp Med ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952042

RESUMEN

BACKGROUND: Artesunate (ASA) acts as an •O2- source through the breakdown of endoperoxide bridges catalyzed by Fe2+, yet its efficacy in ASA-based nanodrugs is limited by poor intracellular delivery. METHODS: ASA-hyaluronic acid (HA) conjugates were formed from hydrophobic ASA and hydrophilic HA by an esterification reaction first, and then self-targeting nanomicelles (NM) were developed using the fact that the amphiphilic conjugates of ASA and HA are capable of self-assembling in aqueous environments. RESULTS: These ASA-HA NMs utilize CD44 receptor-mediated transcytosis to greatly enhance uptake by breast cancer cells. Subsequently, endogenous Fe2+ from the tumor catalyzes the released ASA to produce highly toxic •O2- radicals to kill tumor cells, although sustained tumor growth inhibition can be achieved via in vivo experiments. CONCLUSIONS: Self-targeting NMs represent a promising strategy for enhancing ASA-based treatments, leveraging clinically approved drugs to expedite drug development and clinical research in oncology.

7.
Int J Biol Macromol ; 276(Pt 1): 133807, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996887

RESUMEN

To fulfill the current need for intelligent active food packaging. This study incorporated the curcumin inclusion complexes (CUR-CD) into chitosan/polyvinyl alcohol polymer to develop a new intelligent active film. The structures of films were analyzed by Fourier-transform infrared (FT-IR), scanning electron microscope (SEM), and so on. The CP-Cur150 film displays exceptional mechanical properties, water vapor barrier, and UV blocking capabilities as demonstrated by physical analysis. The CP-Cur150 film exhibited free radical scavenging rates on 2,2-diazo-di-3-ethylbenzothiazolin-6-sulfonic (ABTS) (98 %) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (87 %). Additionally, it showed inhibitory effects on Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), reducing live colony counts by approximately 2.7 and 1.3 Log10 CFU/mL, respectively. The films were used to monitor the shrimp's freshness in real time. With the spoilage of shrimp, the film exhibited clear color fluctuations, from light yellow to red. In addition, the evaluation of the impact of films on pork pH, total volatile basic nitrogen, and total bacterial counts demonstrated that the CP-Cur150 film displayed the most significant effectiveness in preserving freshness, thereby extending the shelf life of pork.

8.
J Physiol Investig ; 67(3): 118-128, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38910572

RESUMEN

MicroRNA-150-5p (miR-150-5p) has been implicated in the progression of several cancer types, yet its specific functional role and regulatory mechanisms in bladder cancer (BC) remain largely unexplored. Our study revealed significant downregulation of miR-150-5p and upregulation of NEDD4-binding protein 2-like 1 gene (N4BP2L1) in BC tissues compared to controls using quantitative real-time polymerase chain reaction and western blot analysis, respectively. Reduced miR-150-5p expression correlated with advanced tumor stage and lymph node metastasis, while increased N4BP2L1 levels were associated with larger tumor size by the Chi-square test. Functionally, miR-150-5p exerted significant inhibitory effects on BC cell proliferation, migration, inducing G0/G1 phase arrest, and apoptosis. We confirmed N4BP2L1 as a direct target of miR-150-5p in BC cells using luciferase reporter assay. Crucially, N4BP2L1 knockdown mimicked, while overexpression counteracted the inhibitory impacts of miR-150-5p on BC cell proliferation, migration, and invasion. In addition, N4BP2L1 overexpression reversed miR-150-5p-induced alterations in CDK4, Cyclin D1, Bcl-2, PCNA, Ki-67, N-cadherin, Bad, and E-cadherin levels in BC cells. Based on these results, it can be inferred that the miR-150-5p/N4BP2L1 axis might constitute a promising candidate for therapeutic targeting in the treatment of BC.


Asunto(s)
Movimiento Celular , Proliferación Celular , MicroARNs , Neoplasias de la Vejiga Urinaria , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo
9.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891819

RESUMEN

Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Terapia Fototérmica , Humanos , Terapia Fototérmica/métodos , Neoplasias/terapia , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico
10.
Microsyst Nanoeng ; 10: 89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919161

RESUMEN

With the increasing demand for multifunctional optoelectronic devices, flexible electrochromic energy storage devices are being widely recognized as promising platforms for diverse applications. However, simultaneously achieving high capacitance, fast color switching and large optical modulation range is very challenging. In this study, the MXene-based flexible in-plane microsupercapacitor was fabricated via a mask-assisted spray coating approach. By adding electrochromic ethyl viologen dibromide (EVB) into the electrolyte, the device showed a reversible color change during the charge/discharge process. Due to the high electronic conductivity of the MXene flakes and the fast response kinetics of EVB, the device exhibited a fast coloration/bleaching time of 2.6 s/2.5 s, a large optical contrast of 60%, and exceptional coloration efficiency. In addition, EVB acted as a redox additive to reinforce the energy storage performance; as a result, the working voltage window of the Ti3C2-based symmetric aqueous microsupercapacitor was extended to 1 V. Moreover, the device had a high areal capacitance of 12.5 mF cm-2 with superior flexibility and mechanical stability and showed almost 100% capacitance retention after 100 bending cycles. The as-prepared device has significant potential for a wide range of applications in flexible and wearable electronics, particularly in the fields of camouflage, anticounterfeiting, and displays.

11.
Inorg Chem ; 63(20): 9297-9306, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38712902

RESUMEN

The photocatalytic oxidation of benzyl alcohol and the simultaneous evolution of hydrogen from water are efficient dual-optimal routes. It is important to develop composite catalysts that combine redox properties and facilitate electron-hole separation and transport. Herein, the bimetallic-doped Mo-ZIS@Ti photocatalyst was designed and synthesized, and the selective oxidation of benzyl alcohol and hydrogen evolution by water splitting was realized at the same time. Under visible light irradiation, benzyl alcohol was completely converted with more than 99% selectivity for benzaldehyde, and the H2 production rate was 5.6 times higher than the initial ZIS. The exceptional catalytic performance was ascribed to utilizing Ti-MIL-125 as a precursor, wherein slowly releasing-doped Ti formed robust Ti-S bonds that quickly transfer electrons and reduce sites. Meanwhile, doping Mo effectively captures photogenerated holes and acts as active sites for oxidation reactions. Both experimental characterization and work function calculations demonstrate that the bimetallic synergism effectively modulates the electronic structure of ZIS, promotes the directional separation of electrons and holes, and significantly improves the photoactivity and stability of ZIS. This work contributes a route to obtain benzaldehyde and green hydrogen at the same time and also gives new insights for the construction and mechanism study of bimetallic-doping catalysts.

14.
Pharmaceutics ; 16(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38794265

RESUMEN

Sonodynamic therapy (SDT) has attracted significant attention in recent years as it is an innovative approach to tumor treatment. It involves the utilization of sound waves or ultrasound (US) to activate acoustic sensitizers, enabling targeted drug release for precise tumor treatment. This review aims to provide a comprehensive overview of SDT, encompassing its underlying principles and therapeutic mechanisms, the applications of nanomaterials, and potential synergies with combination therapies. The review begins by introducing the fundamental principle of SDT and delving into the intricate mechanisms through which it facilitates tumor treatment. A detailed analysis is presented, outlining how SDT effectively destroys tumor cells by modulating drug release mechanisms. Subsequently, this review explores the diverse range of nanomaterials utilized in SDT applications and highlights their specific contributions to enhancing treatment outcomes. Furthermore, the potential to combine SDT with other therapeutic modalities such as photothermal therapy (PTT) and chemotherapy is discussed. These combined approaches aim to synergistically improve therapeutic efficacy while mitigating side effects. In conclusion, SDT emerges as a promising frontier in tumor treatment that offers personalized and effective treatment options with the potential to revolutionize patient care. As research progresses, SDT is poised to play a pivotal role in shaping the future landscape of oncology by providing patients with a broader spectrum of efficacious and tailored treatment options.

15.
ACS Nano ; 18(21): 13528-13537, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38747549

RESUMEN

Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.


Asunto(s)
Biopelículas , Quitosano , Caries Dental , Nanopartículas , Ácido Fítico , Caries Dental/prevención & control , Quitosano/química , Quitosano/farmacología , Humanos , Nanopartículas/química , Ácido Fítico/química , Ácido Fítico/farmacología , Ácido Fítico/administración & dosificación , Animales , Biopelículas/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Ratones
16.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727958

RESUMEN

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Asunto(s)
Fosfatasas de Especificidad Dual , Inflamación , Lipopolisacáridos , MicroARNs , Ligamento Periodontal , Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Supervivencia Celular/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología , Transducción de Señal/genética , Células Madre/metabolismo
17.
Nat Commun ; 15(1): 4330, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773072

RESUMEN

The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Infecciones por Henipavirus , Proteínas Virales de Fusión , Animales , Anticuerpos Neutralizantes/inmunología , Femenino , Anticuerpos Antivirales/inmunología , Infecciones por Henipavirus/virología , Infecciones por Henipavirus/inmunología , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/química , Humanos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/química , Virus Nipah/inmunología , Internalización del Virus/efectos de los fármacos , Henipavirus/inmunología , Cricetinae , Reacciones Cruzadas/inmunología , Virus Hendra/inmunología , Macaca , Mesocricetus , Cristalografía por Rayos X
18.
Int J Med Sci ; 21(6): 1003-1015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774754

RESUMEN

Objective: Asthma is a chronic heterogeneous airway disease, and imbalanced T-helper type 1 (Th1) and Th2 cell-mediated inflammation contribute to its pathogenesis. Although it has been suggested that androgen and estrogen were involved in development of asthma, the underlying mechanisms remained largely unclear. Studies have demonstrated that Runx3 could promote naive CD4+ T cells to differentiate into Th1 cells. Hence, our study aimed to explore the potential regulatory mechanism of androgen and estrogen on asthma via modulating Runx3. Methods: First, clinical assessments and pulmonary function tests were conducted on 35 asthma patients and 24 healthy controls. The concentrations of androgen, estrogen, and androgen estrogen ratios were assessed in peripheral blood samples of asthma patients and healthy controls. Then, a murine asthma model was established to explore the effects of estrogen and androgen (alone or in combination) on asthma. Third, an in vitro assay was used to explore the mechanism of combination of androgen and estrogen in asthma. Results: We observed decreased androgen and increased estrogen levels in asthma patients compared with healthy controls. In mice with experimental asthma, there were increased serum concentrations of estrogen and decreased serum concentrations of androgen, intervention with combination of androgen and estrogen alleviated airway inflammations, increased Runx3 expressions and elevated Th1 differentiation. In CD4+ T cells co-cultured with bronchial epithelial cells (BECs), treatment with androgen plus estrogen combination promoted Th1 differentiation, which was mitigated by Runx3 knockdown in BECs and enhanced by Runx3 overexpression. Conclusion: These findings suggest that androgen estrogen combination modulate the Th1/Th2 balance via regulating the expression of Runx3 in BECs, thereby providing experimental evidence supporting androgen and estrogen combination as a novel therapy for asthma.


Asunto(s)
Andrógenos , Asma , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Estrógenos , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Andrógenos/sangre , Asma/tratamiento farmacológico , Asma/inmunología , Asma/sangre , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células Th2/inmunología , Células Th2/efectos de los fármacos
19.
PLoS One ; 19(5): e0296414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771805

RESUMEN

Vasectomized mice play a key role in the production of transgenic mice. However, vasectomy can cause great physical and psychological suffering to mice. Therefore, there is an urgent need to find a suitable replacement for vasectomized mice in the production of transgenic mice. In this study, we generated C57BL/6J mice (Piwil1 D633A-INS99, Piwil1mt/mt) with a 99-base insertion in the Miwi (Piwil1) gene using CRISPR/Cas9 technology and showed that Piwil1mt/+ heterozygous mice were normally fertile and that homozygous Piwil1mt/mt males were sterile and females were fertile. Transplantation of normal fertilized eggs into wild pseudopregnant females following mating with Piwil1mt/mt males produced no Piwil1mt/mt genotype offspring, and the number of offspring did not differ significantly from that of pseudopregnant mice following mating and breeding with ligated males. The CRISPR‒Cas9 system is available for generating Miwi-modified mice, and provides a powerful resource to replace ligated males in assisted reproduction research.


Asunto(s)
Proteínas Argonautas , Seudoembarazo , Animales , Femenino , Masculino , Ratones , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sistemas CRISPR-Cas , Ratones Endogámicos C57BL , Ratones Transgénicos , Seudoembarazo/genética
20.
Adv Mater ; 36(28): e2402480, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657757

RESUMEN

The perovskite/Cu(InGa)Se2 (CIGS) tandem solar cells (TSCs) presents a compelling technological combination poised for the next generation of flexible and lightweight photovoltaic (PV) tandem devices, featuring a tunable bandgap, high power conversion efficiency (PCE), lightweight flexibility, and enhanced stability and durability. Over the years, the imperative to enhance the performance of wide bandgap (WBG) perovskite solar cells (PSCs) has grown significantly, particularly in the context of a flexible tandem device. In this study, an all-round passivation strategy known as Dual Passivation at Grains and Interfaces (DPGI) is introduced for WBG PSCs in perovskite/CIGS tandem structures. The implementation of DPGI is tailored to improve film crystallinity and passivate defects across the solar cell structure, leading to a substantial performance enhancement for WBG PSCs. Subsequently, both rigid and flexible tandem devices are assembled. Impressively, a fully flexible 4T perovskite/CIGS TSCs is successfully fabricated with a PCE of 26.57%, making it the highest value in this field and highlighting its potential applications in the next generation of flexible lightweight PV tandem devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA