Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 944: 173827, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866164

RESUMEN

The improvement in the agricultural production through continuous and heavy nutrient input like nitrogen fertilizer under the upland red soil of south China deteriorates soil quality, and this practice in the future could threaten future food production and cause serious environmental problems in China. This research is initiated with the objectives of evaluating the impacts of long-term chemical nitrogen fertilization on soil quality, crop yield, and greenhouse gas emissions, with insights into post-lime application responses. Compared to sole application of chemical nitrogen fertilization, combined application with lime increased soil indicators (pH by 6.30 %-7.76 %, Ca2+ by 90.06 %-252.77 %, Mg2+ by 184.47 %-358.05 %, available P by 5.05 %-30.04 %, and soil alkali hydrolysable N by 23.49 %-41.55 %. Combined application of chemical nitrogen fertilization with lime (NPCa (0.59), NPKCa (0.61), and NKCa (0.27) significantly improved soil quality index compared to the sole application of chemical nitrogen fertilization (NP (0.31), NPK (0.36), and NK (0.16). Compared to sole application of chemical nitrogen fertilization, combined application with lime increased grain yield by 48.36 %-61.49 %. Structural equation modeling elucidated that combined application of chemical nitrogen fertilization and lime improved wheat grain yield by improving soil quality. Exchangeable Ca2+, exchangeable Mg2+, pH, and exchangeable Al3+ were the most influential factors of wheat grain yield. Overall, the combined application of chemical nitrogen fertilization and lime decreased global warming potential (calculated from N2O and CO2) by 16.92 % emissions compared to the sole application of chemical nitrogen fertilization. Therefore, liming acidic soil in upland red soil of South China is a promising management option for improved soil quality, wheat grain yield, and mitigation of greenhouse gas emissions.

2.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772369

RESUMEN

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Vectores Genéticos/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/citología , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Línea Celular , Transcripción Genética
3.
Pharmacol Res ; 203: 107175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582357

RESUMEN

Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy.


Asunto(s)
Cisplatino , Ginsenósidos , Neoplasias , Cisplatino/uso terapéutico , Cisplatino/efectos adversos , Cisplatino/administración & dosificación , Ginsenósidos/uso terapéutico , Ginsenósidos/farmacología , Ginsenósidos/administración & dosificación , Humanos , Animales , Neoplasias/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/administración & dosificación
4.
Exp Gerontol ; 191: 112436, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636570

RESUMEN

Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is involved in the progression of Parkinson's disease (PD), but the specific regulatory role needs further exploration. This study showed that the expression of NEAT1 was upregulated in the cerebrospinal fluid (CSF) and peripheral blood of patients with different stages of PD. 1-Methyl-4-phenylpyridine (MPP)-treated PC 12 cells were transfected with si-NEAT1, and MPP treatment promoted cell apoptosis, oxidative stress and inflammatory factor secretion. Si-NEAT1 reversed the effects of MPP. NEAT1 silencing eliminated the effect of MPP on the protein expression levels of LC3-II and p62/SQSTM1. By using an online bioinformatics database, Fused in Sarcoma (FUS) was confirmed to be an RNA binding protein of NEAT1, and it was highly expressed in the CSF and peripheral blood of patients with PD. Si-FUS was transfected into MPP-treated PC 12 cells to detect cell apoptosis, oxidative stress, inflammatory factor secretion and autophagy, and the results were the same as those of transfection of si-NEAT1. Furthermore, MPP treatment reduced the phosphorylation levels of PI3K, Akt and mTOR, whereas si-FUS reversed the effects of MPP. In vivo, compared with the model group, the PD mice showed reduced NEAT1 and FUS expression levels and activated PI3K pathway after being injected with si-NEAT1. The brain tissue of NEAT1-silenced PD mice had decreased inflammatory infiltration and apoptosis and increased neurological scores. In conclusion, NEAT1 is involved in PD progression through FUS-mediated inhibition of the PI3K/AKT/mTOR signalling pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Largo no Codificante , Proteína FUS de Unión a ARN , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Células PC12 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Humanos , Apoptosis , Progresión de la Enfermedad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Ratones Endogámicos C57BL , Estrés Oxidativo , 1-Metil-4-fenilpiridinio , Autofagia
5.
Res Sq ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464103

RESUMEN

Acute myocardial infarction stands as a prominent cause of morbidity and mortality worldwide1-6. Clinical studies have demonstrated that the severity of cardiac injury following myocardial infarction exhibits a circadian pattern, with larger infarct sizes and poorer outcomes in patients experiencing morning onset myocardial infarctions7-14. However, the molecular mechanisms that govern circadian variations of myocardial injury remain unclear. Here, we show that BMAL114-20, a core circadian transcription factor, orchestrates diurnal variability in myocardial injury. Unexpectedly, BMAL1 modulates circadian-dependent cardiac injury by forming a transcriptionally active heterodimer with a non-canonical partner, hypoxia-inducible factor 2 alpha (HIF2A)6,21-23, in a diurnal manner. Substantiating this finding, we determined the cryo-EM structure of the BMAL1/HIF2A/DNA complex, revealing a previously unknown capacity for structural rearrangement within BMAL1, which enables the crosstalk between circadian rhythms and hypoxia signaling. Furthermore, we identified amphiregulin (AREG) as a rhythmic transcriptional target of the BMAL1/HIF2A heterodimer, critical for regulating circadian variations of myocardial injury. Finally, pharmacologically targeting the BMAL1/HIF2A-AREG pathway provides effective cardioprotection, with maximum efficacy when aligned with the pathway's circadian trough. Our findings not only uncover a novel mechanism governing the circadian variations of myocardial injury but also pave the way for innovative circadian-based treatment strategies, potentially shifting current treatment paradigms for myocardial infarction.

6.
3 Biotech ; 14(4): 97, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38449710

RESUMEN

Cucumber wilt is an important soil borne disease in cucumber production, which seriously affects the development of the cucumber industry. Cleome spinosa also has pharmacological effects such as antibacterial, analgesic, anti-inflammatory, and insect repellent. To study the control effect and mechanism of Cleome spinosa fumigation on cucumber wilt disease, different concentrations of Cleome spinosa fragments were applied on cucumber plants infected with Fusarium oxysporum. Cleome spinosa fumigation significantly reduced the incidence rate of cucumber Fusarium wilt. Under the fumigation treatment of 7.5 g kg-1 Cleome spinosa fragments, the preventive effects were 74.7%. Cleome spinosa fragments fumigation can promote cucumber growth and synthesis of photosynthetic pigments, thereby improving individual plant yield and fruit quality. At 7.5 g kg-1 Cleome spinosa fragments fumigation treatment, the plant height and individual plant yield of cucumber increased by 20.3% and 34.3%, respectively. Cleome spinosa fumigation can enhance the activity of antioxidant enzymes in cucumber, maintain a balance of reactive oxygen species metabolism, and enhance the plant disease resistance. Moreover, Cleome spinosa can also regulate the activities of Mg2+-ATPase and Ca2+-ATPase, enhancing its resistance to Fusarium oxysporum. Moreover, number of bacteria and fungi significantly decreased under Cleome spinosa fumigation. Those results suggested that Cleome spinosa could effectively restrain cucumber Fusarium wilt. This study will provide a new idea for the further use of biological fumigation to prevent soil-borne diseases.

7.
Phys Chem Chem Phys ; 26(13): 10136-10143, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38487978

RESUMEN

In the context of the global energy crisis, the development of high-performance heat transport devices within nano scales has become increasingly important. Theoretical discovery and evaluation of novel structures with high performance in thermal conductivity by affordable calculations could provide significant instructions for experimental studies focusing on thermoelectric device development. For 2-dimensional (2D) functional materials, their heat transport efficiency is correlated with their electronic properties and structural features. In this study, we computationally investigated the heat transport within Janus XClO (X = Cr, Ir); its structural and electronic properties were well solved by first-principles calculations. Furthermore, to evaluate thermodynamics stability and applicability, ab initio molecular dynamics (AIMD) simulations are conducted. Through a benchmarking study upon these XClO monolayers with different compositions, we noticed that their heat transport efficiency is associated with the percentage of doped magnetic atoms. The theoretical insights provided by this study are highly instructive for future experimental studies focusing on thermal device development.

8.
Environ Res ; 248: 118265, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266898

RESUMEN

The poor light absorption and low carrier separation efficiency of Titanium dioxide (TiO2) limit its further application. The introduction of plasma metal Ag have the potential to solve these drawbacks owing to its plasma resonance effect. Thus core-shell structure Ag@TiO2 plasma photocatalysts was prepared by using facile reduction method in this work. More specifically, Ag@TiO2 composite catalysts with different Ag loading amounts were prepared in the presence of surfactant PVP. Ag@TiO2 demonstrates excellent light absorption performance and photoelectric separation efficiency compared with pure TiO2. As a result, it displays excellent performance of Cr(VI) reduction under visible light. The optimal composite catalysts Ag@TiO2-5P achieves exceptional visible-light-driven photocatalytic Cr(VI) reduction efficiency of 0.01416 min-1 that is 2.29 times greater than pure TiO2. To investigate the role of PVP, we also synthesized Ag@TiO2-5 without PVP. The experimental results show that although Ag@TiO2-5 Cr(VI) reduction performance is superior to pure TiO2, it significantly decreases compared with Ag@TiO2-5P. The results of TEM and optoelectronic testing show that agglomeration of Ag particles leads to a decrease in the photoelectric separation efficiency of Ag@TiO2-5. The smaller Ag particles provide more active sites and demonstrating a stronger overall local surface plasmon resonance (LSPR) effect. DMPO spin-trapping ESR spectra testing indicates that ∙O2- and ∙OH are the main reactive species. This research provides a potential strategy to prepare Ag-based plasma photocatalysts for environment protection.


Asunto(s)
Plata , Resonancia por Plasmón de Superficie , Plata/química , Titanio/química , Cromo/química , Luz , Catálisis
9.
Talanta ; 271: 125651, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262130

RESUMEN

Modern solid phase microextraction (SPME) device linked with mass spectrometry (SPME-MS) has evolved from producing ion chronogram as flat noisy signal to as unimodal-like signal. We designed a SPME device, which is closer in morphology to LC column, linked it with a miniature mass spectrometer (SPME-Mini MS), and proposed a mathematical model that elution of compound from the SPME device is equivalent to overlay of elution of the compound from the infinite LC columns with the lengths between 0 and the length of the device and it can generate an ion chronogram as right-skew unimodal signal. Rhodamine B as analyte was used for experimental verification and its unimodal signal was used to fit the parameters of a computer simulation program based on the model. The experimental results and simulations empirically cross-confirmed that SPME-Mini MS can generate ion chronogram as clean right-skew unimodal signal. Furthermore, the SPME-Mini MS system was used for quantitative analysis of psychotropic drugs (i.e. risperidone and aripiprazole) in artificial urine. The results preliminarily demonstrated that the system can utilize area under unimodal signal for quantitative analysis and has potential to be applied for on-site, fast and accurate quantification of drugs and other compounds.

10.
Sci Total Environ ; 916: 170270, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278248

RESUMEN

The efficient management of fertilizer application in agriculture is vital for both food security and mitigating greenhouse gas (GHG) emissions. However, as potassium fertilizer (KF) is an essential soil nutrient, its impact on soil GHG emissions has received little attention. To address this knowledge gap and identify key determinants of GHG emissions, we conducted a comprehensive meta-analysis of 205 independent experiments conducted worldwide. Our results revealed that, in comparison to sole nitrogen fertilizer (NF) application, the concurrent use of KF elevated nitrous oxide (N2O) and methane (CH4) emissions by 39.5 % and 21.1 %, respectively, while concurrently reducing carbon dioxide (CO2) emissions by 8.1 %. The ratio of nitrogen and potassium fertilizer input (NF/KF) is identified as the primary factor explaining the variation in N2O emissions, whereas the type of KF plays a crucial role in determining CH4 and CO2 emissions. We observed a significant negative correlation between the NF/KF ratio and response ratios of N2O and CH4 emissions and a positive correlation with CO2 emissions response ratios. Furthermore, our findings indicate that when the NF/KF ratio surpasses 1.97, 4.61, and 3.78, respectively, the impact of KF on reducing N2O, CH4, and CO2 emissions stabilizes. Overall, our results underscore that the global integration of KF into agricultural practices significantly influences N2O and CH4 emissions, while simultaneously reducing CO2 emissions at a large scale. These findings provide a foundational framework and practical guidance for optimizing fertilizer application in the development of GHG emission reduction models.

11.
Behav Res Methods ; 56(1): 342-361, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36622559

RESUMEN

Language is an advanced cognitive function of humans, and verbs play a crucial role in language. To understand how the human brain represents verbs, it is critical to analyze what knowledge humans have about verbs. Thus, several verb feature datasets have been developed in different languages such as English, Spanish, and German. However, there is still a lack of a dataset of Chinese verbs. In this study, we developed a semantic feature dataset of 1140 Chinese Mandarin verbs (CVFD) with 11 dimensions including verb familiarity, agentive subject, patient, action effector, perceptual modality, instrumentality, emotional valence, action imageability, action complexity, action intensity, and the usage scenario of action. We calculated the semantic features of each verb and the correlation between dimensions. We also compared the difference between action, mental, and other verbs and gave some examples about how to use CVFD to classify verbs according to different dimensions. Finally, we discussed the potential applications of CVFD in the fields of neuroscience, psycholinguistics, cultural differences, and artificial intelligence. All the data can be found at https://osf.io/pv29z/ .


Asunto(s)
Inteligencia Artificial , Semántica , Humanos , Lenguaje , Psicolingüística , China
12.
J Biol Chem ; 300(1): 105547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072047

RESUMEN

As an important posttranslational modification, SUMOylation plays critical roles in almost all biological processes. Although it has been well-documented that SUMOylated proteins are mainly localized in the nucleus and have roles in chromatin-related processes, we showed recently that the SUMOylation machinery is actually enriched in the nuclear matrix rather than chromatin. Here, we provide compelling biochemical, cellular imaging and proteomic evidence that SUMOylated proteins are highly enriched in the nuclear matrix. We demonstrated that inactivation of SUMOylation by inhibiting SUMO-activating E1 enzyme or KO of SUMO-conjugating E2 enzyme UBC9 have only mild effect on nuclear matrix composition, indicating that SUMOylation is neither required for nuclear matrix formation nor for targeting proteins to nuclear matrix. Further characterization of UBC9 KO cells revealed that loss of SUMOylation did not result in significant DNA damage, but led to mitotic arrest and chromosome missegregation. Altogether, our study demonstrates that SUMOylated proteins are selectively enriched in the nuclear matrix and suggests a role of nuclear matrix in mediating SUMOylation and its regulated biological processes.


Asunto(s)
Segregación Cromosómica , Matriz Nuclear , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación , Cromatina/metabolismo , Matriz Nuclear/metabolismo , Proteómica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Humanos , Animales , Drosophila melanogaster
13.
J Chromatogr A ; 1713: 464559, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38101303

RESUMEN

Herein, a practical method for the determination of organic and inorganic Cl in gaseous ethylene by liquid standard samples was established; and then, the effects of various speciation and matrices on results were investigated followed by automatic quick furnace-ion chromatography (AQF-IC) analysis. From the evaluation of speciation and matrices, unified equation was explored and the method for accurately determining trace HCl with strong adsorption was also developed. First, summarize regularity that the light oil liquid standards themselves conformed to equal Cl mass response by AQF-IC (R2=0.99993). Then, the actual Cl mass in standard gas at 4 levels with different speciation and matrices were calculated by the same regularity based on the assumption of not affected by speciation or matrix change. The gas mass was accurately calculated based on Van der Waals' Equation. As a result, combined with the theoretical Cl mass calculated by equation, the recoveries of the organic and inorganic Cl were in the range of 93.0%-101.4% [2.0 µmol/mol of CH3Cl/(N2+ethylene)], 93.4%-104.9% (10.1 µmol/mol of CH3Cl/N2), 101.6%-111.2% (20.2 µmol/mol of CH3Cl/ethylene) and 95.3%-101.0% (11.0 mg/m3 of HCl/N2), respectively, indicating the successful verification of above assumption rather than applying more exploration to rebuild relationships between different systems. As proof of principle and for more verification, system of CH2Cl2/He gas standard sample was prepared to explore the quantitative accuracy in more speciation with recoveries in the range of 91.3%-98.5%. In addition, the detection limit of Cl content based on S/N = 3 for ethylene was 0.06 mg/kg. Intra-day and inter-day relative standard devations (RSDs) were in the range of 9.3%-12.0% (≤1.0 mg/kg) and 2.5%-4.4% (>1.0 mg/kg). Finally, the developed method based on gas-liquid equal mass response was successfully applied in the actual samples of light olefins such as ethylene and propylene.


Asunto(s)
Gases , Agua , Agua/química , Cromatografía , Iones , Etilenos
14.
Heliyon ; 9(12): e22622, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076087

RESUMEN

Fusarium oxysporum is a soil-borne plant pathogen that can cause various plant diseases including cucumber wilt. An experiment was conducted to explore the physiological mechanism underlying the inhibitory activity of Cleome spinosa against the morphology and reproduction of F. oxysporum. Different concentrations of C. spinosa extracts. -0 (Z0), 5 (Z5), 15 (Z15), 30 (Z30), 45 (Z45), and 60 (Z60) mg·mL-1 were applied to F. oxysporum. Cleome spinosa extract significantly reduced the colony diameter (89.7 %) and dry mass (78.9 %) of F. oxysporum under the Z45 treatment. Moreover, spore formation was also significantly inhibited by C. spinosa extract. The spore number and germination rate decreased by 73.5 % and 83.0 %, respectively, under the Z45 treatment. The number of mycelia in the unit field of view was significantly reduced, and the mycelia were wizened with rough surfaces and more bends under the Z45 treatment. Hence, C. spinosa extracts severely damaged the morphology of F. oxysporum mycelia. Additionally, F. oxysporum could not adjust to the osmotic changes caused by C. spinosa extract, leading to membrane injury and electrolyte leakage. Finally, they impaired the antioxidant system in F. oxysporum, resulting in cell membrane injury.

15.
J Psychiatr Res ; 168: 240-248, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922598

RESUMEN

Studies have confirmed that perceived control is strongly negatively correlated with emotional distress. However, few studies have explored whether perceived stress plays a potential mediating role in this relationship and whether the association between perceived stress and emotional distress is moderated by psychological resources, such as self-esteem and social support. Furthermore, it is unclear whether there are sex differences in the moderating effects of psychological resources on emotional distress. A total of 951 healthy adults (51.84% females) from different regions of mainland China participated in the study and completed questionnaires in early December 2022, when prevention and control policies concerning COVID-19 in China underwent rapid change. Perceived control negatively correlated with emotional distress, and perceived stress mediated the association between perceived control and emotional distress. In addition, both internal (i.e., self-esteem) and external psychological resources (i.e., social support) moderated the association between perceived stress and emotional distress, and the positive correlation between perceived stress and emotional distress was higher in individuals with low social support (and self-esteem) than in those with high social support (and self-esteem). We found sex differences in the moderating roles of psychological resources. Specifically, self-esteem had a moderating effect on both men and women, whereas social support had a moderating effect only on women. These findings improve understanding of the relationship between perceived control and emotional distress and suggest that intervention programs should be designed to target men and women differently.


Asunto(s)
Distrés Psicológico , Caracteres Sexuales , Adulto , Humanos , Masculino , Femenino , Emociones , Autoimagen , Apoyo Social , Estrés Psicológico/psicología
16.
Front Chem ; 11: 1301690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025073

RESUMEN

Under the background of energy crisis, hydrogen owns the advantage of high combustion and shows considerable environment friendliness; however, to fully utilize this novel resource, the major hurdle lies in its delivery and storage. The development of the in-depth yet systematical methodology for two-dimensional (2D) storage media evaluation still remains to be challenging for computational scientists. In this study, we tried our proposed evaluation protocol on a 2D material, g-C3N5, and its hydrogen storage performance was characterized; and with addition of Li atoms, the changes of its electronical and structural properties were detected. First-principles simulations were conducted to verify its thermodynamics stability; and, its hydrogen adsorption capacity was investigated qualitatively. We found that the charges of the added Li atoms were transferred to the adjacent nitrogen atoms from g-C3N5, with the formation of chemical interactions. Thus, the isolated metallic sites tend to show considerable electropositivity, and can easily polarize the adsorbed hydrogen molecules, and the electrostatic interactions can be enhanced correspondingly. The maximum storage capacity of each primitive cell can be as high as 20 hydrogen molecules with a gravimetric capacity of 8.65 wt%, which surpasses the 5.5 wt% target set by the U.S. Department of Energy. The average adsorption energy is ranged from -0.22 to -0.13 eV. We conclude that the complex 2D material, Li-decorated g-C3N5 (Li@C3N5), can serve as a promising media for hydrogen storage. This methodology provided in this study is fundamental yet instructive for future 2D hydrogen storage materials development.

17.
Neuroscience ; 530: 66-78, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619767

RESUMEN

INTRODUCTION: Collective self-esteem (CSE) is an important personality variable, defined as self-worth derived from membership in social groups. A study explored the neural basis of CSE using a task-based functional magnetic resonance imaging (fMRI) paradigm; however, task-independent neural basis of CSE remains to be explored, and whether the CSE neural basis of resting-state fMRI is consistent with that of task-based fMRI is unclear. METHODS: We built support vector regression (SVR) models to predict CSE scores using topological metrics measured in the resting-state functional connectivity network (RSFC) as features. Then, to test the reliability of the SVR analysis, the activation pattern of the identified brain regions from SVR analysis was used as features to distinguish collective self-worth from other conditions by multivariate pattern classification in task-based fMRI dataset. RESULTS: SVR analysis results showed that leverage centrality successfully decoded the individual differences in CSE. The ventromedial prefrontal cortex, anterior cingulate cortex, posterior cingulate gyrus, precuneus, orbitofrontal cortex, posterior insula, postcentral gyrus, inferior parietal lobule, temporoparietal junction, and inferior frontal gyrus, which are involved in self-referential processing, affective processing, and social cognition networks, participated in this prediction. Multivariate pattern classification analysis found that the activation pattern of the identified regions from the SVR analysis successfully distinguished collective self-worth from relational self-worth, personal self-worth and semantic control. CONCLUSION: Our findings revealed CSE neural basis in the whole-brain RSFC network, and established the concordance between leverage centrality and the activation pattern (evoked during collective self-worth task) of the identified regions in terms of representing CSE.

18.
Cell Discov ; 9(1): 85, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580347

RESUMEN

Lysine succinylation is one of the major post-translational modifications occurring on histones and is believed to have significant roles in regulating chromatin structure and function. Currently, histone desuccinylation is widely believed to be catalyzed by members of the SIRT family deacetylases. Here, we report that histone desuccinylation is in fact primarily catalyzed by the class I HDAC1/2/3. Inhibition or depletion of HDAC1/2/3 resulted in a marked increase of global histone succinylation, whereas ectopic expression of HDAC1/2/3 but not their deacetylase inactive mutants downregulated global histone succinylation. We demonstrated that the class I HDAC1/2/3 complexes have robust histone desuccinylase activity in vitro. Genomic landscape analysis revealed that histone succinylation is highly enriched at gene promoters and inhibition of HDAC activity results in marked elevation of promoter histone succinylation. Furthermore, our integrated analysis revealed that promoter histone succinylation positively correlates with gene transcriptional activity. Collectively, we demonstrate that the class I HDAC1/2/3 but not the SIRT family proteins are the major histone desuccinylases particularly important for promoter histone desuccinylation. Our study thus sheds new light on the role of histone succinylation in transcriptional regulation.

19.
Plant Biotechnol J ; 21(12): 2611-2624, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37581303

RESUMEN

Plants experience numerous biotic stresses throughout their lifespan, such as pathogens and pests, which can substantially affect crop production. In response, plants have evolved various metabolites that help them withstand these stresses. Here, we show that two specialized metabolites in the herbaceous perennial Belamcanda chinensis, tectorigenin and its glycoside tectoridin, have diverse defensive effects against phytopathogenic microorganisms and antifeeding effects against insect pest. We further functionally characterized a 7-O-uridine diphosphate glycosyltransferase Bc7OUGT, which catalyses a novel reversible glycosylation of tectorigenin and tectoridin. To elucidate the catalytic mechanisms of Bc7OUGT, we solved its crystal structure in complex with UDP and UDP/tectorigenin respectively. Structural analysis revealed the Bc7OUGT possesses a narrow but novel substrate-binding pocket made up by plentiful aromatic residues. Further structure-guided mutagenesis of these residues increased both glycosylation and deglycosylation activities. The catalytic reversibility of Bc7OUGT was also successfully applied in an one-pot aglycon exchange reaction. Our findings demonstrated the promising biopesticide activity of tectorigenin and its glycosides, and the characterization and mechanistic study of Bc7OUGT could facilitate the design of novel reversible UGTs to produce valuable glycosides with health benefits for both plants and humans.


Asunto(s)
Glicosiltransferasas , Isoflavonas , Humanos , Glicosiltransferasas/genética , Isoflavonas/química , Glicosilación , Plantas/metabolismo , Uridina Difosfato , Glicósidos
20.
Heliyon ; 9(7): e18215, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519664

RESUMEN

Purpose: Chemokine ligand 5 (CCL5), a vital member of the CC chemokine family, plays diverse roles in tumorigenesis, metastasis, and prognosis in various human tumors. However, no pan-cancer analysis has been conducted to illustrate its distinctive effects on clinical prognosis via underlying mechanisms and biological characteristics. Methods: Herein, we exploited the existed public bioinformatics database, primarily TCGA database and GTEx data, to comprehensively analyze the value of CCL5 involved in patient prognosis. Results: This study found that CCL5 was excessively expressed in most tumors and significantly associated with clinical prognosis in 10 out of 33 types of tumors. Notably, CCL5 might be an independent predictive biomarker of clinical outcome in SKCM patients, confirmed by univariate and multivariate Cox regression analysis. Furthermore, we acquired the genetic alteration status of CCL5 in multiple types of tumor tissues from TCGA cohorts. We revealed a potential correlation between the expression level of CCL5 and tumor mutational burden in 33 types of tumors. In addition, data showed that DNA methylation was associated with CCL5 gene expression in THCA, PRAD, LUSC, and BRCA cancers. Immune infiltration and immune checkpoints are fine indexes for evaluating immunotherapy. We uncovered that CCL5 was negatively correlated with the immune infiltration of CD8+ T cell, CD4+ T cell, macrophages, and gamma delta T cells in BRCA-basal and CESC tumors, while a significant positive correlation was observed in BLCA, COAD and other 7 types of tumors. Besides, CCL5 was closely associated with the immune checkpoint molecules in 8 types of tumors. The TIDE score was less in the CCL5 high-expressed group than in the CCL5 low-expressed group in SKCM patients, which indicated that CCL5 might be a fine monitor of immune response for immunotherapy. GO enrichment analysis data uncovered that cytokine-cytokine receptor interaction and chemokine signaling might be involved in the role of CCL5 in regulating tumor pathogenesis and prognosis. Conclusion: In conclusion, CCL5 was preliminarly identified as a biomarker of immune response and prognosis for tumors patients via our first comprehensive pan-cancer analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA