Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875478

RESUMEN

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

2.
Mol Neurobiol ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520610

RESUMEN

NUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.868 C > T/p.R290C) and a splice site variant (c.792-2 A > G), in two unrelated LGS patients using trio-based whole-exome sequencing performed in a cohort of 165 LGS patients. Both variants were absent in the gnomAD population and showed a significantly higher observed number of variants than expected genome-wide. The R290C variant was predicted to damage NUS1 and decrease its protein stability. The c.792-2 A > G variant caused premature termination of the protein. Knockdown of NUS1 activated the UPR pathway, resulting in apoptosis of HEK293T cells. Supplementing cells with expression of wild-type NUS1, but not the mutant (R290C), rescued UPR activation and apoptosis in NUS1 knockdown cells. Compared to wild-type Drosophila, seizure-like behaviors and excitability in projection neurons were significantly increased in Tango14 (homolog of human NUS1) knockdown and Tango14R290C/+ knock-in Drosophila. Additionally, abnormal development and a small body size were observed in both mutants. Activated UPR signaling was also detected in both mutants. Thus, NUS1 is a causative gene for LGS with dominant inheritance. The pathogenicity of these variants is related to the UPR signaling activation, which may be a common pathogenic mechanism of DEE.

3.
J Neurosci ; 27(14): 3686-94, 2007 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17409232

RESUMEN

Monosynaptic connections between muscle spindle (Ia) afferents and motoneurons (MNs), the central portion of the stretch reflex circuit, are highly specific, but the mechanisms underlying this specificity are primarily unknown. In this study, we report that embryonic overexpression of neurotrophin-3 (NT3) in muscles disrupts the development of these specific Ia-MN connections, using transgenic (mlc/NT3) mice that express elevated levels of NT3 in muscles during development. In mlc/NT3 mice, there is a substantial increase in the amplitudes of monosynaptic EPSPs evoked by Ia afferents in MNs as measured with extracellular recordings from ventral roots. Despite this increased functional projection of Ia afferents, there is no obvious change in the anatomical density of Ia projections into the ventral horn of the spinal cord. Intracellular recordings from MNs revealed a major disruption in the pattern of Ia-MN connections. In addition to the normal connections between Ia afferents and MNs supplying the same muscle, there were also strong monosynaptic inputs from Ia afferents supplying unrelated muscles, which explains the increase seen in extracellular recordings. There was also a large variability in the strength of Ia input to individual MNs, both from correct and incorrect Ia afferents. Postnatal muscular administration of NT3 did not cause these changes in connectivity. These results indicate that prenatal exposure to elevated levels of NT3 disrupts the normal mechanisms responsible for synaptic selectivity in the stretch reflex circuit.


Asunto(s)
Neurotrofina 3/biosíntesis , Efectos Tardíos de la Exposición Prenatal , Médula Espinal/embriología , Médula Espinal/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA