Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1283, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347023

RESUMEN

Additive manufacturing (AM), known as 3D printing, enables rapid fabrication of geometrically complex copper (Cu) components for electrical conduction and heat management applications. However, pure Cu or Cu alloys produced by 3D printing often suffer from either low strength or low conductivity at room and elevated temperatures. Here, we demonstrate a design strategy for 3D printing of high strength, high conductivity Cu by uniformly dispersing a minor portion of lanthanum hexaboride (LaB6) nanoparticles in pure Cu through laser powder bed fusion (L-PBF). We show that trace additions of LaB6 to pure Cu results in an improved L-PBF processability, an enhanced strength, an improved thermal stability, all whilst maintaining a high conductivity. The presented strategy could expand the applicability of 3D printed Cu components to more demanding conditions where high strength, high conductivity and thermal stability are required.

2.
Materials (Basel) ; 16(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676537

RESUMEN

In this paper, the hot tensile deformation of a GH3230 superalloy double-sheet was conducted under deformation temperatures ranging from 1123~1273 K and strain rates ranging from 0.001~0.2 s-1. The flow behavior of the GH3230 superalloy double-sheet was analyzed in detail. The hot tensile deformation process of the GH3230 superalloy double-sheet includes four stages of elastic deformation, strain hardening, steady state and fracture. The true stress decreases with the increasing deformation temperature and decreasing strain rate. The variation of the strain rate sensitivity index and strain hardening index with processing parameters were discussed. The average apparent activation energy for hot tensile deformation is 408.53 ± 46.96 kJ·mol-1. A combined Johnson-Cook and Hensel-Spittle model considering the couple effect of strain hardening, strain rate hardening and thermal softening was established to describe the hot tensile behavior of the GH3230 alloy double-sheet. Compared to Johnson-Cook model and Hensel-Spittle model, this model has the highest predicting accuracy. The average absolute relative error of true stress between the experimental and the predicted is only 2.35%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA