Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.350
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 2): 140620, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39094338

RESUMEN

Food contamination has long plagued agriculture, posing significant health risks to consumers. The use of volatile gases for food safety detection has proven highly effective, with composite gas sensors that leverage the two-dimensional material MXene exhibiting notable advancements in detecting various target gases. This paper reviews the progress of MXene-based composite gas sensors in the detection of food safety-related gases. The review begins by examining MXene material synthesis methods and then presents an overview of techniques aimed at enhancing MXene-based sensor detection capabilities. Recently, advancements in MXene composite gas sensors tailored for food safety gases have been highlighted. Finally, challenges encountered in gas-sensing applications of MXene-based composites are outlined, alongside predictions for their future development, aiming to offer insights for the application and advancement of intelligent gas sensors for target gases in food safety.

2.
Ultrasound Med Biol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098472

RESUMEN

OBJECTIVE: Recurrent stroke after revascularization surgeries predicts poor outcome in patients with moyamoya disease (MMD). Early identification of patients with stroke risk paves the way for rescue intervention. This study aimed to investigate the role of ultrasound in identifying patients at risk of post-operative ischemic events (PIEs). METHODS: This prospective study enrolled patients with symptomatic MMD who underwent indirect revascularization surgeries. Ultrasound examinations were performed preoperatively and at 3 mo post-operatively to evaluate the hemodynamic changes in extracranial and intracranial arteries on the operated side. PIE was defined as ischemic stroke or transient ischemic attack in the operated hemisphere within 1 y. The areas under receiver operating characteristic curves were compared between models for prediction of PIE. RESULTS: A total of 56 operated hemispheres from 36 patients (mean age, 23.0 ± 18.5 y) were enrolled in this study, and 27% developed PIE. In multivariate logistic regression models, PIE was associated with lower end-diastolic velocity and flow volume (FV) of the ipsilateral external carotid artery (ECA), and lower FV of ipsilateral superficial temporal artery and occipital artery at 3 mo post-operatively (all p < 0.05). Moreover, the post-operative FV of the ipsilateral ECA was the only one factor that significantly increased the areas under receiver operating characteristic curves from 0.727 to 0.932 when adding to a clinical-angiographic model for prediction of PIE (p = 0.017). This parameter was significantly lower in hemispheres with PIE, both in adult and pediatric patients. CONCLUSION: After indirect revascularization, surgeries in patients with symptomatic MMD, FV of ipsilateral ECA at 3 mo helps clinicians to identify patients at risk of PIE.

3.
Virol Sin ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098716

RESUMEN

Acinetobacter baumannii (A. baumannii) poses a serious public health challenge due to its notorious antimicrobial resistance, particularly carbapenem-resistant A. baumannii (CRAB). In this study, we isolated a virulent phage, named P1068, from medical wastewater capable of lysing CRAB, primarily targeting the K3 capsule type. Basic characterization showed that P1068 infected the A. baumannii ZWAb014 with an optimal MOI of 1, experienced a latent period of ten minutes and maintained stability over a temperature range of 4 °C to 37 °C and pH range of 3-10. Phylogenetic and average nucleotide identity analyses indicate that P1068 can be classified as a novel species within the genus Obolenskvirus of the Caudoviricetes class as per the most recent virus classification released by the International Committee on Taxonomy of Viruses (ICTV). Additionally, according to classical morphological classification, P1068 is identified as a T4-like phage (Myoviridae). Interestingly, we found that the tail fibre protein (TFP) of P1068 shares 74% coverage and 88.99% identity with the TFP of a T7-like phage (Podoviridae), AbKT21phiIII (NC_048142.1). This finding suggests that the TFP gene of phages may undergo horizontal transfer across different genera and morphologies. In vitro antimicrobial assays showed that P1068 exhibited antimicrobial activity against A. baumannii in both biofilm and planktonic states. In mouse models of intraperitoneal infection, P1068 phage protected mice from A. baumannii infection and significantly reduced bacterial loads in various tissues such as the brain, blood, lung, spleen, and liver compared to controls. In conclusion, this study demonstrates that phage P1068 might be a potential candidate for the treatment of carbapenem-resistant and biofilm-forming A. baumannii infections, and expands the understanding of horizontal transfer of phage TFP genes.

4.
Plant Foods Hum Nutr ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153161

RESUMEN

Chickpea is rich in protein and has been demonstrated to possess hypoglycaemic effects. However, the specific bioactive ingredients and mechanisms underlying their hypoglycaemic effects remain unclear. In this study, enzymatic hydrolysis and gel permeation chromatography were used to extract chickpea bioactive peptide (CBP) from chickpea protein. One of the products, CBP-75-3, was found to inhibit α-glucosidase (GAA) activity and significantly increase the viability of insulin resistant (IR) cells. Moreover, CBP-75-3 significantly increased the rate of glucose consumption and glycogen synthesis in IR-HepG2 cells. Moreover, CBP-75-3 decreased the levels of malondialdehyde and increased the levels of superoxide dismutase, glutathione, and glutathione peroxidase. Subsequently, 29 novel bioactive peptides in CBP-75-3 were identified by LC‒MS/MS, and the potential hypoglycaemic targets of these novel bioactive peptides were investigated using molecular docking. Based on the results, the residues of the novel bioactive peptides interact with GAA through hydrogen bonding (especially LLR, FH, RQLPR, KGF and NFQ by binding to the substrate binding pocket or the active centre of GAA), thereby inhibiting GAA activity and laying a foundation for its hypoglycaemic activity. In short, the novel bioactive peptides isolated and identified from chickpea can effectively exert hypoglycaemic effects and increase the antioxidant capacity of IR-HepG2 cells. This study reveals that CBP-75-3, a natural hypoglycaemic ingredient, has potential for applications in functional foods and provides a theoretical basis for the development and application of CBP in the future.

5.
J Environ Manage ; 368: 122216, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153323

RESUMEN

The algae-bacterial granular sludge (ABGS) technology has garnered significant attention due to its remarkable attributes of low carbon emissions. To investigate the performance of the ABGS system under various substrate loading rates, the parallel photo-sequencing batch reactors (P1 and P2) were set up. The results indicated that chlorophyll-a content and extracellular polymeric substance content were measured at 10.7 ± 0.3 mg/L and 61.4 ± 0.7 mg/g SS in P1 under relatively low substrate loading rate (0.9 kg COD/m3/d and 0.09 kg N/m3/d). Moreover, kinetic study revealed that the maximal specific P uptake rate for P1 reached 0.21 mg P/g SS/h under light conditions, and it achieved 0.078 mg P/g SS/h under dark conditions, highlighting the significant role on phosphorus removal played by algae in the ABGS system. The microbial analysis and scanning electron microscopy confirmed that filamentous algae predominantly colonize the surface in P1, whereas spherical bacteria dominate the surface of granular sludge in P2. Additionally, a diverse array of microorganisms including bacteria, algae, and metazoa such as Rotifers and Nematodes were observed in both systems, providing evidence for the establishment of a symbiotic system. This study not only confirmed the ability of ABGS for efficient N and P removal under different substrate loading conditions but also highlighted its potential to enhance the ecological diversity of the reaction system.

6.
Angew Chem Int Ed Engl ; : e202412830, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39157915

RESUMEN

In the electrochemical nitrogen reduction reaction (NRR), a leverage relationship exists between NH3-producing activity and selectivity because of the competing hydrogen evolution reaction (HER), which means that high activity with strong protons adsorption causes low product selectivity. Herein, we design a novel metal-organic hydrogen bonding framework (MOHBF) material to modulate this leverage relationship by a hydrogen-bond-regulated proton transfer pathway. The MOHBF material was composited with reduced graphene oxide (rGO) to form a Ni-N2O2 molecular catalyst (Ni-N2O2/rGO). The unique structure of O atoms in Ni-O-C and N-O-H could form hydrogen bonds with H2O molecules to interfere with protons being directly adsorbed onto Ni active sites, thus regulating the proton transfer mechanism and slowing the HER kinetics, thereby modulating the leverage relationship. Moreover, this catalyst has abundant Ni-single-atom sites enriched with Ni-N/O coordination, conducive to the adsorption and activation of N2. The Ni-N2O2/rGO exhibits simultaneously enhanced activity and selectivity of NH3 production with a maximum NH3 yield rate of 209.7 µg h-1 mgcat.-1 and a Faradaic efficiency of 45.7%, outperforming other reported single-atom NRR catalysts.

7.
Angew Chem Int Ed Engl ; : e202413805, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140900

RESUMEN

Organic photothermal conversion materials hold immense promise for various applications owing to their structural flexibility. Recent research has focused on enhancing near-infrared (NIR) absorption and mitigating radiative transition processes. In this study, we have developed a viable approach to the design of photothermal conversion materials through the construction of ternary organic cocrystals, by introducing a third component as a molecular blocker and motion unit into a binary donor-acceptor system. Superstructural and photophysical properties of the ternary cocrystals were characterized using various spectroscopic techniques. The role of the molecular blocker in radical stabilization and photothermal conversion were demonstrated. Intriguingly, the motions of the entire pyrene molecules in the cocrystal have been observed by variable temperature single-crystal X-ray diffraction results. The excellent performance of ternary cocrystal as a photothermal material was validated through efficient NIR-II photothermal and solar-driven water evaporation experiments. The efficiency of water evaporation reached 88.7 %, with a corresponding evaporation rate of 1.29 kg m-2 h-1, representing excellent performance among pure organic small molecular photothermal conversion materials. Our research underscores the introduction of molecular blockers and motion units to stabilize radicals and produce outstanding photothermal conversion materials, offering new pathways for developing efficient and stable photothermal conversion materials.

8.
Nat Commun ; 15(1): 6605, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098918

RESUMEN

Cross-linked polymers with covalent adaptable networks (CANs) can be reprocessed under external stimuli owing to the exchangeability of dynamic covalent bonds. Optimization of reprocessing conditions is critical since increasing the reprocessing temperature costs more energy and even deteriorates the materials, while reducing the reprocessing temperature via molecular design usually narrows the service temperature range. Exploiting CO2 gas as an external trigger for lowering the reprocessing barrier shows great promise in low sample contamination and environmental friendliness. Herein, we develop a type of CANs incorporated with ionic clusters that achieve CO2-facilitated recyclability without sacrificing performance. The presence of CO2 can facilitate the rearrangement of ionic clusters, thus promoting the exchange of dynamic bonds. The effective stress relaxation and network rearrangement enable the system with rapid recycling under CO2 while retaining excellent mechanical performance in working conditions. This work opens avenues to design recyclable polymer materials with tunable dynamics and responsive recyclability.

9.
Acta Pharmacol Sin ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112771

RESUMEN

Esculetin (ESC) is a coumarin-derived phytochemical prevalent in traditional Chinese medicine that exhibits anti-acute ischemic stroke activities. Our previous studies demonstrate that CKLF1 is a potential anti-stroke target for coumarin-derived compound. In this study we investigated whether CKLF1 was involved in the neuroprotective effects of ESC against photothrombotic stroke in mice. The mice were treated with ESC (20, 40 or 80 mg·kg-1·d-1, i.g.) for two weeks. The therapeutic effect of ESC was assessed using MRI, neurological function evaluation, and a range of behavioral tests on D1, 3, 7 and 14 of ESC administration. We showed that oral administration of ESC dose-dependently reduced the cerebral infarction volume within one week after stroke, improved behavioral performance, and alleviated neuropathological damage within two weeks. Functional MRI revealed that ESC significantly enhanced the abnormal low-frequency fluctuation (ALFF) value of the motor cortex and promoted functional connectivity between the supplementary motor area (SMA) and multiple brain regions. We demonstrated that ESC significantly reduced the protein levels of CKLF1 and CCR5, as well as the CKLF1/CCR5 protein complex in the peri-infarcted area. We showed that ESC (0.1-10 µM) dose-dependently blocked CKLF1-induced chemotactic movement of neutrophils in the Transwell assay, reducing the interaction of CKLF1/CCR5 on the surface of neutrophils, thereby reducing neutrophil infiltration, and decreasing the expression of ICAM-1, VCAM-1 and MMP-9 in the peri-infarct tissue. Knockout of CKLF1 reduced brain infarction volume and motor dysfunction after stroke but also negated the anti-stroke efficacy and neutrophil infiltration of ESC. These results suggest that the efficacy of ESC in promoting post-stroke neural repair depends on its inhibition on CKLF1-mediated neutrophil infiltration, which offering novel perspectives for elucidating the therapeutic properties of coumarins.

10.
Diabetes Obes Metab ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134462

RESUMEN

AIM: This nationwide cohort study evaluated the impact of sodium-glucose co-transporter-2 inhibitors (SGLT2i) on patients with type 2 diabetes mellitus (T2DM) after ischaemic stroke (IS), aiming to compare clinical outcomes between SGLT2i-treated patients and those not receiving SGLT2i. MATERIALS AND METHODS: Utilizing Taiwan's National Health Insurance Research Database, we identified 707 patients with T2DM treated with SGLT2i and 27 514 patients not treated with SGLT2i after an IS, respectively, from 1 May 2016 to 31 December 2019. Propensity score matching was applied to balance baseline characteristics. The follow-up period extended from the index date (3 months after the index acute IS) until the independent occurrence of the study outcomes, 6 months after discontinuation of the index drug, or the end of the study period (31 December 2020), whichever came first. RESULTS: After propensity score matching, compared with the non-SGLT2i group (n = 2813), the SGLT2i group (n = 707) exhibited significantly lower recurrent IS rates (3.605% per year vs. 5.897% per year; hazard ratio: 0.55; 95% confidence interval: 0.34-0.88; p = 0.0131) and a significant reduction in all-cause mortality (5.396% per year vs. 7.489% per year; hazard ratio: 0.58; 95% confidence interval: 0.39-0.85; p = 0.0058). No significant differences were observed in the rates of acute myocardial infarction, cardiovascular death, heart failure hospitalization, or lower limb amputation. CONCLUSIONS: Our findings indicate significantly lower risks of recurrent IS and all-cause mortality among patients with T2DM receiving SGLT2i treatment. Further studies are required to validate these results and investigate the underlying mechanisms behind the observed effects.

11.
Front Endocrinol (Lausanne) ; 15: 1430693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165510

RESUMEN

Objectives: To explore the impact of lymph node diameter on the efficacy and safety of ultrasound-guided microwave ablation (MWA) in the treatment of cervical metastatic lymph nodes (CMLNs) from thyroid cancer. Methods: A total of 32 patients with 58 CMLNs from thyroid cancer underwent ultrasound-guided MWA and were included in the retrospective study. Patients were divided into three groups based on the mean largest diameter of the CMLNs: Group A (diameter ≤10mm), Group B (10mm < diameter ≤20mm), and Group C (diameter >20mm). The research involved comparing changes in cervical metastatic lymph nodes and serum thyroglobulin (sTg) levels, as well as the incidence of complications, before and after microwave ablation across three groups of patients. Results: The technical success rate of this study was 100% (32/32), and they showed no major complications. Compared with measurements taken before MWA, the mean largest diameter and volume of CMLNs, as well as the sTg level, showed significant reductions (p <0.05) at the last follow-up in all three patient groups. Group A and B exhibited higher lymph node volume reduction rates and complete disappearance rates compared to Group C. However, the recurrence rate in the three groups were in the following order: Group C > Group B > Group A. The occurrence rate of mild complications was Group A > Group C > Group B. Conclusion: MWA is a safe and effective method for treating CMLNs, with advantages for localized nodes but limitations for larger ones. Careful consideration and personalized plans are advised, based on comprehensive evidence assessment.


Asunto(s)
Ganglios Linfáticos , Metástasis Linfática , Microondas , Neoplasias de la Tiroides , Humanos , Femenino , Masculino , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/sangre , Microondas/uso terapéutico , Persona de Mediana Edad , Estudios Retrospectivos , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Adulto , Anciano , Resultado del Tratamiento , Estudios de Seguimiento , Técnicas de Ablación/métodos
12.
Apoptosis ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110356

RESUMEN

High-altitude pulmonary edema (HAPE) is a fatal threat for sojourners who ascend rapidly without sufficient acclimatization. Acclimatized sojourners and adapted natives are both insensitive to HAPE but have different physiological traits and molecular bases. In this study, based on GSE52209, the gene expression profiles of HAPE patients were compared with those of acclimatized sojourners and adapted natives, with the common and divergent differentially expressed genes (DEGs) and their hub genes identified, respectively. Bioinformatic methodologies for functional enrichment analysis, immune infiltration, diagnostic model construction, competing endogenous RNA (ceRNA) analysis and drug prediction were performed to detect potential biological functions and molecular mechanisms. Next, an array of in vivo experiments in a HAPE rat model and in vitro experiments in HUVECs were conducted to verify the results of the bioinformatic analysis. The enriched pathways of DEGs and immune landscapes for HAPE were significantly different between sojourners and natives, and the common DEGs were enriched mainly in the pathways of development and immunity. Nomograms revealed that the upregulation of TNF-α and downregulation of RPLP0 exhibited high diagnostic efficiency for HAPE in both sojourners and natives, which was further validated in the HAPE rat model. The addition of TNF-α and RPLP0 knockdown activated apoptosis signaling in endothelial cells (ECs) and enhanced endothelial permeability. In conclusion, TNF-α and RPLP0 are shared biomarkers and molecular bases for HAPE susceptibility during the acclimatization/adaptation/maladaptation processes in sojourners and natives, inspiring new ideas for predicting and treating HAPE.

13.
Environ Pollut ; 360: 124679, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116923

RESUMEN

The Ulva prolifera bloom is considered one of the most serious ecological disasters in the Yellow Sea in the past decade, forming a carbon sink in its source area within a short period but becoming a carbon source at its destination. To explore the effects of different environmental changes on seawater dissolved carbon pools faced by living U. prolifera in its originating area, U. prolifera were cultured in three sets with different light intensity (54, 108, and 162 µmol m-2 s-1), temperature (12, 20, and 28 °C) and nitrate concentration gradients (25, 50, and 100 µmol L-1). The results showed that moderate light (108 µmol m-2 s-1), temperature (20 °C), and continuous addition of exogenous nitrate significantly enhanced the absorption of dissolved inorganic carbon (DIC) in seawater by U. prolifera and most promoted its growth. Under the most suitable environment, the changes in the seawater carbonate system were mainly dominated by biological production and denitrification, with less influence from aerobic respiration. Facing different environmental changes, U. prolifera continuously changed its carbon fixation mode according to tissue δ13C results, with the changes in the concentrations of various components of DIC in seawater, especially the fluctuation of HCO3- and CO2 concentrations. Enhanced light intensity of 108 µmol m-2 s-1 could shift the carbon fixation pathway of U. prolifera towards the C4 pathway compared to temperature and nitrate stimulation. Environmental conditions at the origin determined the amount of dissolved carbon fixed by U. prolifera. Therefore, more attention should be paid to the changes in marine environmental conditions at the origin of U. prolifera, providing a basis for scientific management of U. prolifera.

14.
Mol Ther ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39091030

RESUMEN

Although CRISPR-Cas9 technology is poised to revolutionize the treatment of diseases with underlying genetic mutations, it faces some significant issues limiting clinical entry. They include low-efficiency in vivo systemic delivery and undesired off-target effects. Here, we demonstrate, by modifying Cas9 with phosphorothioate-DNA oligos (PSs), that one can efficiently deliver single and bi-specific CRISPR-Cas9/guide RNA (gRNA) dimers in vitro and in vivo with reduced off-target effects. We show that PS-Cas9/gRNA-mediated gene knockout preserves chimeric antigen receptor T cell viability and expansion in vitro and in vivo. PS-Cas9/gRNA mediates gene perturbation in patient-derived tumor organoids and mouse xenograft tumors, leading to potent tumor antitumor effects. Further, HER2 antibody-PS-Cas9/gRNA conjugate selectively perturbs targeted genes in HER2+ ovarian cancer xenografts in vivo. Moreover, we created bi-specific PS-Cas9 with two gRNAs to target two adjacent sequences of the same gene, leading to efficient targeted gene disruption ex vivo and in vivo with markedly reduced unintended gene perturbation. Thus, the cell-penetrating PS-Cas9/gRNA can achieve efficient systemic delivery and precision in gene disruption.

15.
Alpha Psychiatry ; 25(3): 323-328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39148603

RESUMEN

Background: Cognitive decline is a prevalent health problem in older adults, and effective treatments remain to be produced. Serum vitamin D, a commonly used biochemical marker, is widely recognized as an indicator of various diseases. Existing research has not fully elucidated the relationship between vitamin D and cognitive function. The aim of this study is to investigate the real relationship between vitamin D and cognitive function and to identify indicators that have a strong predictive effect on cognitive decline. Methods: At first, we used the dataset of the genome-wide association studies studying vitamin D and cognitive performance to conduct Mendelian randomization analysis. Subsequently, we employed linear regression and smooth curve fitting methods to assess the relationship using the National Health and Nutrition Examination Survey data. Finally, we investigated other predictive features of cognitive performance utilizing a machine learning model. Results: We found that a 1-unit increase in vitamin D is associated with a 6.51% reduction (P < .001) in the risk of cognitive decline. The correlation between vitamin D and cognitive performance is nonlinear, with the inflection point at 79.9 nmol/L (left: ß = 0.043, P < .001; right: ß = -0.007, P = .420). In machine learning, the top 5 predictors are vitamin D, weight, height, age, and body mass index. Conclusion: There is a causal relationship between vitamin D and cognitive performance. 79.9 nmol/L could be the optimal dose for vitamin D supplementation in the elderly. Further consideration of other factors in vitamin D interventions is necessary.

16.
Neural Netw ; 179: 106538, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39053304

RESUMEN

The mining of diverse patterns from bike flow has attracted widespread interest from researchers and practitioners. Prior arts concentrate on forecasting the flow evolution from bike demand records. Nevertheless, a tricky reality is the frequent occurrence of missing bike flow, which hinders us from accurately understanding flow patterns. This study investigates an interesting task, i.e., Bike-sharing demand recovery (Biker). Biker is not a simple time-series imputation problem, rather, it confronts three concerns: observation uncertainty, complex dependencies, and environmental facts. To this end, we present a novel diffusion probabilistic solution with factual knowledge fusion, namely DBiker. Specifically, DBiker is the first attempt to extend the diffusion probabilistic models to the Biker task, along with a conditional Markov decision-making process. In contrast to existing probabilistic solutions, DBiker forecasts missing observations through progressive steps guided by an adaptive prior. Particularly, we introduce a Flow Conditioner with step embedding and a Factual Extractor to explore the complex dependencies and multiple environmental facts, respectively. Additionally, we devise a self-gated fusion layer that adaptively selects valuable knowledge to act as an adaptive prior, guiding the generation of missing observations. Finally, experiments conducted on three real-world bike systems demonstrate the superiority of DBiker against several baselines.

18.
World J Gastrointest Oncol ; 16(7): 3118-3157, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072171

RESUMEN

BACKGROUND: In the quest to manage hepatocellular carcinoma (HCC), the focus has shifted to a more holistic approach encompassing both data analytics and innovative treatments. Analyzing rich data resources, such as the cancer genome atlas (TCGA), and examining progressive therapies can potentially reshape the trajectory of HCC treatment. AIM: To elucidate the immunological genes and the underlying mechanism of the combined Kombo knife and sorafenib regimen for HCC by analyzing data from TCGA and machine learning data. METHODS: Immune attributes were evaluated via TCGA's postablation HCC RNA sequencing data. Using weighted gene coexpression network analysis and machine learning, we identified genes with high prognostic value. The therapeutic landscape and safety metrics of the integrated treatment were critically evaluated across cellular and animal models. RESULTS: Immune genes-specifically, peptidylprolyl isomerase A and solute carrier family 29 member 3-emerged as significant prognostic markers. Enhanced therapeutic outcomes, such as prolonged progression-free survival and an elevated overall response rate, characterize the combined approach, with peripheral blood mononuclear cells displaying potent effects on HCC dynamics. CONCLUSION: The combination of Kombo knife with sorafenib is an innovative HCC treatment modality anchored in immune-centric strategies.

19.
Sci Total Environ ; 947: 174537, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977088

RESUMEN

Certain heavy metals have been correlated to an elevated risk of inflammation-related diseases and mortality. Nevertheless, the intricate relationships between metal exposure, inflammation and mortality remain unknown. We included 3741 adults with measurements of ten urinary heavy metals in the National Health and Nutritional Examination Survey (NHANES) 2005-2010, followed up to December 31, 2019. Low-grade systemic inflammation was evaluated by various markers, including C-reactive protein (CRP) and ratios derived from regular blood tests. We assessed associations between heavy metal and all-cause mortality using multivariate COX regressions. Then we assessed the mediation effect of low-grade systemic inflammation on the associations via Sobel Test. To gauge the systemic inflammatory potential of the multi-metal mixture and its correlation with all-cause mortality, a Metal Mixture Inflammatory Index (MMII) was developed using reduced rank regression (RRR) models. The association between MMII and all-cause mortality was explored via multivariate COX regressions. Cadmium, antimony and uranium displayed positive associations with mortality, with hazard ratios (HR) ranging from 1.18 to 1.46 (all P-FDR < 0.05). Mediation analyses revealed that the associations between specific heavy metals (cadmium and antimony) and mortality risk were slightly mediated by the low-grade systemic inflammation markers, with mediation proportions ranging from 3.11 % to 5.38 % (all P < 0.05). MMII, the weighted sum of 9 heavy metals, significantly predicted platelet-to-lymphocyte ratio (PLR) and CRP (ß = 0.10 and 1.16, all P < 0.05), was positively associated with mortality risk (HR 1.28, 95 % CI 1.14 to 1.43). Exposure to heavy metals might increase all-cause mortality, partly mediated by low-grade systemic inflammation. MMII, designed to assess the potential systemic inflammatory effects of exposure to multiple heavy metals, was closely related to the all-cause mortality risk. This study introduces MMII as an approach to evaluating co-exposure and its potential health effects comprehensively.


Asunto(s)
Exposición a Riesgos Ambientales , Inflamación , Metales Pesados , Humanos , Inflamación/inducido químicamente , Masculino , Femenino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Persona de Mediana Edad , Adulto , Encuestas Nutricionales , Contaminantes Ambientales , Proteína C-Reactiva/análisis , Biomarcadores , Mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA