Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Health Care Sci ; 3(1): 53-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38939168

RESUMEN

Remarkable progress has been made in infection prevention and control (IPC) in many countries, but some gaps emerged in the context of the coronavirus disease 2019 (COVID-19) pandemic. Core capabilities such as standard clinical precautions and tracing the source of infection were the focus of IPC in medical institutions during the pandemic. Therefore, the core competences of IPC professionals during the pandemic, and how these contributed to successful prevention and control of the epidemic, should be studied. To investigate, using a systematic review and cluster analysis, fundamental improvements in the competences of infection control and prevention professionals that may be emphasized in light of the COVID-19 pandemic. We searched the PubMed, Embase, Cochrane Library, Web of Science, CNKI, WanFang Data, and CBM databases for original articles exploring core competencies of IPC professionals during the COVID-19 pandemic (from January 1, 2020 to February 7, 2023). Weiciyun software was used for data extraction and the Donohue formula was followed to distinguish high-frequency technical terms. Cluster analysis was performed using the within-group linkage method and squared Euclidean distance as the metric to determine the priority competencies for development. We identified 46 studies with 29 high-frequency technical terms. The most common term was "infection prevention and control training" (184 times, 17.3%), followed by "hand hygiene" (172 times, 16.2%). "Infection prevention and control in clinical practice" was the most-reported core competency (367 times, 34.5%), followed by "microbiology and surveillance" (292 times, 27.5%). Cluster analysis showed two key areas of competence: Category 1 (program management and leadership, patient safety and occupational health, education and microbiology and surveillance) and Category 2 (IPC in clinical practice). During the COVID-19 pandemic, IPC program management and leadership, microbiology and surveillance, education, patient safety, and occupational health were the most important focus of development and should be given due consideration by IPC professionals.

2.
J Am Chem Soc ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940387

RESUMEN

The rapidly evolving field of inorganic solid-state electrolytes (ISSEs) has been driven in recent years by advances in data-mining techniques, which facilitates the high-throughput computational screening for candidate materials in the databases. The key to the mining process is the selection of critical features that underline the similarity of a material to an existing ISSE. Unfortunately, this selection is generally subjective and frequently under debate. Here we propose a subgraph isomorphism matching method that allows an objective evaluation of the similarity between two compounds according to the topology of the local atomic environment. The matching algorithm has been applied to discover four structure types that are highly analogous to the LiTi2(PO4)3 NASICON prototype. We demonstrate that the local atomic environments similar to LiTi2(PO4)3 endow these four structures with favorable Li diffusion tunnels and ionic conductivity on par with those of the prototype. By further taking into account the electronic structure and electrochemical stability window, 13 compounds are identified to be potential ISSEs. Our findings not only offer a promising approach toward rapid mining of fast ion conductors without limitation in the compositional range but also reveal insights into the design of ISSEs according to the topology of their framework structures.

3.
Nat Commun ; 15(1): 4196, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760357

RESUMEN

Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What's more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g-1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.

4.
Adv Mater ; : e2405519, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801117

RESUMEN

Pushing intercalation-type cathode materials to their theoretical capacity often suffers from fragile Li-deficient frameworks and severe lattice strain, leading to mechanical failure issues within the crystal structure and fast capacity fading. This is particularly pronounced in layered oxide cathodes because the intrinsic nature of their structures is susceptible to structural degradation with excessive Li extraction, which remains unsolved yet despite attempts involving elemental doping and surface coating strategies. Herein, a mechanochemical strengthening strategy is developed through a gradient disordering structure to address these challenges and push the LiCoO2 (LCO) layered cathode approaching the capacity limit (256 mAh g-1, up to 93% of Li utilization). This innovative approach also demonstrates exceptional cyclability and rate capability, as validated in practical Ah-level pouch full cells, surpassing the current performance benchmarks. Comprehensive characterizations with multiscale X-ray, electron diffraction, and imaging techniques unveil that the gradient disordering structure notably diminishes the anisotropic lattice strain and exhibits high fatigue resistance, even under extreme delithiation states and harsh operating voltages. Consequently, this designed LCO cathode impedes the growth and propagation of particle cracks, and mitigates irreversible phase transitions. This work sheds light on promising directions toward next-generation high-energy-density battery materials through structural chemistry design.

5.
Adv Mater ; 36(27): e2403307, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38630907

RESUMEN

Lithium-rich layer oxide cathodes are promising energy storage materials due to their high energy densities. However, the oxygen loss during cycling limits their practical applications. Here, the essential role of Li content on the topological inhibition of oxygen loss in lithium-rich cathode materials and the relationship between the migration network of oxygen ions and the transition metal (TM) component are revealed. Utilizing first-principles calculations in combination with percolation theory and Monte Carlo simulations, it is found that TM ions can effectively encage the oxidized oxygen species when the TM concentration in TM layer exceeds 5/6, which hinders the formation of a percolating oxygen migration network. This study demonstrates the significance of rational compositional design in lithium-rich cathodes for effectively suppressing irreversible oxygen release and enhancing cathode cycling performance.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38621199

RESUMEN

Recently, the combination of the piezoelectric effect in the photocatalytic process, referred to as piezo-photocatalysis, has gained considerable attention as a promising approach for enhancing the degradation of organic pollutants. In this investigation, we studied the piezo-photocatalysis by fabricating arrays of barium strontium titanate (Ba0.7Sr0.3TiO3) nanorods (BST NRs) on a glass substrate as recoverable catalysts. We found that the degradation rate constant k of the rhodamine B solution achieved 0.0447 min-1 using poled BST NRs in the piezo-photocatalytic process, indicating a 2-fold increase in efficiency compared to the photocatalytic process (0.00183 min-1) utilizing the same material. This is mainly ascribed to the generation of the piezopotential in the poled BST NRs under ultrasonic vibration. Moreover, the BST NR array demonstrated a hydrogen (H2) production rate of 411.5 µmol g-1 h-1. In the photoelectrochemical process, the photocurrent density of poled BST NRs achieved 1.97 mA cm-2 at an applied potential of 1.23 V (ERHE (reversible hydrogen electrode)) under ultrasonic vibrations, representing a 1.7-fold increase compared with the poled BST NRs without ultrasonic vibrations. The measurement results from the liquid chromatograph mass spectrometer (LC-MS) demonstrated the formulation of a degradation pathway for rhodamine B molecules. Moreover, ab initio molecular dynamics (AIMD) simulation results demonstrate the dominance of hydroxyl radicals (•OH) rather than superoxide radicals (•O2-) in the degradation process. This study not only benefits the understanding of the principle of the piezo-photocatalytic process but also provides a new perspective for improving the catalytic efficiency for organic pollutants degradation.

7.
J Phys Chem Lett ; 15(18): 4815-4822, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668696

RESUMEN

Metal-organic frameworks (MOFs) are potential candidates for gas-selective adsorbents for the separation of an ethylene/ethane mixture. To accelerate material discovery, high-throughput computational screening is a viable solution. However, classical force fields, which were widely employed in recent studies of MOF adsorbents, have been criticized for their failure to cover complicated interactions such as those involving π electrons. Herein, we demonstrate that machine learning force fields (MLFFs) trained on quantum-chemical reference data can overcome this difficulty. We have constructed a MLFF to accurately predict the adsorption energies of ethylene and ethane on the organic linkers of MOFs and discovered that the π electrons from both the ethylene molecule and the aromatic rings in the linkers could substantially influence the selectivity for gas adsorption. Four kinds of MOF linkers are identified as having promise for the separation of ethylene and ethane, and our results could also offer a new perspective on the design of MOF building blocks for diverse applications.

8.
J Am Chem Soc ; 146(12): 8098-8109, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477574

RESUMEN

Determining the structures of previously unseen compounds from experimental characterizations is a crucial part of materials science. It requires a step of searching for the structure type that conforms to the lattice of the unknown compound, which enables the pattern matching process for characterization data, such as X-ray diffraction (XRD) patterns. However, this procedure typically places a high demand on domain expertise, thus creating an obstacle for computer-driven automation. Here, we address this challenge by leveraging a deep-learning model composed of a union of convolutional residual neural networks. The accuracy of the model is demonstrated on a dataset of over 60,000 different compounds for 100 structure types, and additional categories can be integrated without the need to retrain the existing networks. We also unravel the operation of the deep-learning black box and highlight the way in which the resemblance between the unknown compound and a structure type is quantified based on both local and global characteristics in XRD patterns. This computational tool opens new avenues for automating structure analysis on materials unearthed in high-throughput experimentation.

9.
J Am Chem Soc ; 146(8): 5532-5542, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38362877

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2RR) toward C2 products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K+ vs Li+), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C1 pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CO2RR.

10.
Nat Commun ; 15(1): 176, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167809

RESUMEN

Despite the recent achievements in urea electrosynthesis from co-reduction of nitrogen wastes (such as NO3-) and CO2, the product selectivity remains fairly mediocre due to the competing nature of the two parallel reduction reactions. Here we report a catalyst design that affords high selectivity to urea by sequentially reducing NO3- and CO2 at a dynamic catalytic centre, which not only alleviates the competition issue but also facilitates C-N coupling. We exemplify this strategy on a nitrogen-doped carbon catalyst, where a spontaneous switch between NO3- and CO2 reduction paths is enabled by reversible hydrogenation on the nitrogen functional groups. A high urea yield rate of 596.1 µg mg-1 h-1 with a promising Faradaic efficiency of 62% is obtained. These findings, rationalized by in situ spectroscopic techniques and theoretical calculations, are rooted in the proton-involved dynamic catalyst evolution that mitigates overwhelming reduction of reactants and thereby minimizes the formation of side products.

11.
Nat Commun ; 15(1): 757, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38272926

RESUMEN

Ball milling is a representative mechanochemical strategy that uses the mechanical agitation-induced effects, defects, or extreme conditions to activate substrates. Here, we demonstrate that ball grinding could bring about contact-electro-catalysis (CEC) by using inert and conventional triboelectric materials. Exemplified by a liquid-assisted-grinding setup involving polytetrafluoroethylene (PTFE), reactive oxygen species (ROS) are produced, despite PTFE being generally considered as catalytically inert. The formation of ROS occurs with various polymers, such as polydimethylsiloxane (PDMS) and polypropylene (PP), and the amount of generated ROS aligns well with the polymers' contact-electrification abilities. It is suggested that mechanical collision not only maximizes the overlap in electron wave functions across the interface, but also excites phonons that provide the energy for electron transition. We expect the utilization of triboelectric materials and their derived CEC could lead to a field of ball milling-assisted mechanochemistry using any universal triboelectric materials under mild conditions.

12.
Small ; 20(12): e2307446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941471

RESUMEN

The zinc dendrite growth generally relies upon a "positive-feedback" mode, where the fast-grown tips receive higher current densities and ion fluxes. In this study, a self-limiting polyacrylamide (PAM) hydrogel that presents negative feedback to dendrite growth is developed. The monomers are purposefully polymerized at the dendrite tips, then the hydrogel reduces the local current density and ion flux by limiting zinc ion diffusion with abundant functional groups. As a consequence, the accumulation at the dendrite tips is restricted, and the (002) facets-oriented deposition is achieved. Moreover, the refined porous structure of the gel enhances Coulombic Efficiency by reducing water activity. Due to the synergistic effects, the zinc anodes perform an ultralong lifetime of 5100 h at 0.5 mA cm-2 and 1500 h at 5 mA cm-2, which are among the best records for PAM-based gel electrolytes. Further, the hydrogel significantly prolongs the lifespan of zinc-ion batteries and capacitors by dozens of times. The developed in situ hydrogel presents a feasible and cost-effective way to commercialize zinc anodes and provides inspiration for future research on dendrite suppression using the negative-feedback mechanism.

13.
Adv Mater ; 35(46): e2304387, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487242

RESUMEN

The recent intensification of the study of contact-electrification at water-solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water-solid contact-electrification can drive chemical reactions. This mechanism, named contact-electro-catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2 O2 ) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2 O2 evolution reaches 58.87 mmol L-1  gcat -1  h-1 . Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2 O2 is formed from hydroxyl radicals (HO• ) or two superoxide radicals (O2 •- ) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab-initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2 O2 from air and water.

14.
Chem Commun (Camb) ; 59(41): 6227-6230, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37129636

RESUMEN

In situ BaSO4 coating, generated in the first discharging of Ba2+ pre-intercalated δ-MnO2, shortens the activation process by inducing fast proton intercalation and stabilizes the MnO2 crystal by suppressing Mn dissolution. The cathode delivers a decent electrochemical performance of 210 mA h g-1 at 1C with a 98% retention after 200 cycles.

15.
ChemSusChem ; 16(17): e202300434, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37253197

RESUMEN

Engineering design of metal organic frameworks (MOFs) for gas separation applications is nowadays a thriving field of investigation. Based on the recent experimental studies of dodecaborate-hybrid MOFs as potential materials to separate industry-relevant gas mixtures, we herein present a systematic theoretical study on the derivatives of the closo-dodecaborate anion [B12 H12 ]2- , which can serve as building blocks for MOFs. We discover that amino functionalization can impart a greater ability to selectively capture carbon dioxide from its mixtures with other gases such as nitrogen, ethylene and acetylene. The main advantage lies in the polarization effect induced by amino group, which favors the localization of the negative charges on the boron-cluster anion and offers a nucleophilic anchoring site to accommodate the carbon atom in carbon dioxide. This work suggests an appealing strategy of polar functionalization to optimize the molecule discrimination ability via preferential adsorption.

16.
Adv Mater ; 35(32): e2301096, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37148533

RESUMEN

Ni-rich layered oxides are the most promising cathodes for Li-ion batteries, but chemo-mechanical failures during cycling and large first-cycle capacity loss hinder their applications in high-energy batteries. Herein, by introducing spinel-like mortise-tenon structures into the layered phase of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811), the adverse volume variations in cathode materials can be significantly suppressed. Meanwhile, these mortise-tenon structures play the role of the expressway for fast lithium-ion transport, which is substantiated by experiments and calculations. Moreover, the particles with mortise-tenon structures usually terminate with the most stable (003) facet. The new cathode exhibits a discharge capacity of 215 mAh g-1 at 0.1 C with an initial Coulombic efficiency of 97.5%, and capacity retention of 82.2% after 1200 cycles at 1 C. This work offers a viable lattice engineering to address the stability and low initial Coulombic efficiency of the Ni-rich layered oxides, and facilitates the implementation of Li-ion batteries with high-energy density and long durability.

17.
Nat Protoc ; 18(3): 883-901, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599962

RESUMEN

The dynamics and chemistry of interfacial water are essential components of electrocatalysis because the decomposition and formation of water molecules could dictate the protonation and deprotonation processes on the catalyst surface. However, it is notoriously difficult to probe interfacial water owing to its location between two condensed phases, as well as the presence of external bias potentials and electrochemically induced reaction intermediates. An atomically flat single-crystal surface could offer an attractive platform to resolve the internal structure of interfacial water if advanced characterization tools are developed. To this end, here we report a protocol based on the combination of in situ Raman spectroscopy and ab initio molecular dynamics (AIMD) simulations to unravel the directional molecular features of interfacial water. We present the procedures to prepare single-crystal electrodes, construct a Raman enhancement mode with shell-isolated nanoparticle, remove impurities, eliminate the perturbation from bulk water and dislodge the hydrogen bubbles during in situ electrochemical Raman experiments. The combination of the spectroscopic measurements with AIMD simulation results provides a roadmap to decipher the potential-dependent molecular orientation of water at the interface. We have prepared a detailed guideline for the application of combined in situ Raman and AIMD techniques; this procedure may take a few minutes to several days to generate results and is applicable to a variety of disciplines ranging from surface science to energy storage to biology.


Asunto(s)
Simulación de Dinámica Molecular , Espectrometría Raman , Agua/química , Electrodos , Hidrógeno
18.
Adv Mater ; 35(5): e2208573, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36460018

RESUMEN

Interest in defect engineering for lithium-ion battery (LIB) materials is sparked by its ability to tailor electrical conductivity and introduce extra active sites for electrochemical reactions. However, harvesting excessive intrinsic defects in the bulk of the electrodes rather than near their surface remains a long-standing challenge. Here, a versatile strategy of quenching is demonstrated, which is exercised in lithium titanate (Li4 Ti5 O12 , LTO), a renowned anode for LIBs, to achieve off-stoichiometry in the interior region. In situ synchrotron analysis and atomic-resolution microscopy reveal the enriched oxygen vacancies and cation redistribution after ice-water quenching, which can facilitate the native unextractable Li ions to participate in reversible cycling. The fabricated LTO anode delivers a sustained capacity of 202 mAh g-1 in the 1.0-2.5 V range with excellent rate capability and overcomes the poor cycling stability seen in conventional defective electrodes. The feasibility of tuning the degree of structural defectiveness via quenching agents is also proven, which can open up an intriguing avenue of research to harness the intrinsic defects for improving the energy density of rechargeable batteries.

19.
Nano Converg ; 9(1): 55, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484882

RESUMEN

Polymer dielectrics are insulators or energy storage materials widely used in electrical and electronic devices. Polymer dielectrics are needed with outstanding dielectric characteristics than current technologies. In this study, the self-assembly of boron nitride nanosheets (BNNSs) was applied to form an inorganic-organic nanocoating on various common polymer dielectrics. It is inexpensive and easy to fabricate this thin coating on a large scale. The coating has a wide bandgap and thus can significantly improve the breakdown strength of polymer dielectrics. The charge characteristics and trapping parameters of nano-domains on the surfaces of polymer dielectrics were measured, and the coating had shallow trap levels. This facilitated the dissipation of surface charges and thus greatly increased the flashover voltage. The coating also effectively improved the temperature stability and dielectric constant of the polymer dielectric. This nanocoating shows potential as a method to effectively improve the dielectric characteristics of polymer dielectrics and outperform existing composite polymer dielectrics, which are crucial for large-scale applications in energy storage and power and electronic devices.

20.
Nat Commun ; 13(1): 6666, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335107

RESUMEN

The idea of spatial confinement has gained widespread interest in myriad applications. Especially, the confined short hydrogen-bond (SHB) network could afford an attractive opportunity to enable proton transfer in a nearly barrierless manner, but its practical implementation has been challenging. Herein, we report a SHB network confined on the surface of ionic covalent organic framework (COF) membranes decorated by densely and uniformly distributed hydrophilic ligands. Combined experimental and theoretical evidences have pointed to the confinement of water molecules allocated to each ligand, achieving the local enrichment of hydronium ions and the concomitant formation of SHBs in water-hydronium domains. These overlapped water-hydronium domains create an interconnected SHB network, which yields an unprecedented ultrahigh proton conductivity of 1389 mS cm-1 at 90 °C, 100% relative humidity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA