RESUMEN
Since the intensification of global environmental pollution and energy shortages, photocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising strategy to convert solar energy into clean chemical energy. Herein, we construct a robust and efficient heterojunction construction photocatalyst for CO2RR, composed of the highly reactive CeNi quantum dots (CeNi QDs) and nickel metal-organic layer (Ni-MOL) ultrathin nanosheets. This design facilitates the rapid separation of photogenerated charge carriers, as confirmed by X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and other characterizations. Mechanistic studies with in situ diffuse reflectance Fourier transform infrared spectroscopy (in situ DRIFTS) and the d-band center calculation indicate that the propensity of photocatalyst for CO2 absorption and CO desorption, leading to high performance and selectivity. The optimized loading amount of CeNi quantum dots and modified structure result in a CO yield of 30.53 mmol·g-1 within 6 h under irradiation. This work not only paves a new and convenient way for developing high-activity quantum dot materials for CO2RR but also exploits novel avenues to fabricate more heterojunction composites for solar energy conversion.
RESUMEN
JOURNAL/nrgr/04.03/01300535-202506000-00028/figure1/v/2024-08-05T133530Z/r/image-tiff The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine ß-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS (a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine ß-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2 inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2, suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
RESUMEN
JOURNAL/nrgr/04.03/01300535-202507000-00029/figure1/v/2024-09-09T124005Z/r/image-tiff Autografting is the gold standard for surgical repair of nerve defects > 5 mm in length; however, autografting is associated with potential complications at the nerve donor site. As an alternative, nerve guidance conduits may be used. The ideal conduit should be flexible, resistant to kinks and lumen collapse, and provide physical cues to guide nerve regeneration. We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them. Subsequently, we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen. The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers. The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability. Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model, suggesting that it has potential for clinical use in human nerve injuries.
RESUMEN
JOURNAL/nrgr/04.03/01300535-202502000-00034/figure1/v/2024-05-28T214302Z/r/image-tiff Several studies have found that transplantation of neural progenitor cells (NPCs) promotes the survival of injured neurons. However, a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application. Small extracellular vesicles (sEVs) contain bioactive molecules for neuronal protection and regeneration. Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases. In this study, we intravitreally transplanted sEVs derived from human induced pluripotent stem cells (hiPSCs) and hiPSCs-differentiated NPCs (hiPSC-NPC) in a mouse model of optic nerve crush. Our results show that these intravitreally injected sEVs were ingested by retinal cells, especially those localized in the ganglion cell layer. Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration, and regulated the retinal microenvironment by inhibiting excessive activation of microglia. Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells, which had protective effects on RGCs after optic nerve injury. These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
RESUMEN
In coherent radiation of an ensemble of electrons, the radiation field from electrons resonantly drives the other electrons inside to produce stimulated emission. The radiation reaction force on the electrons accounting for this stimulated radiation loss is classically described by the Liénard-Wiechert potential. Despite its being the foundation of beam physics for decades, we show that using the "acceleration field" in Liénard-Wiechert potential to describe radiative interactions leads to divergences due to its implicit dependence on instantaneous interactions. Here, we propose an alternative theory for electromagnetic radiation by decomposing the interactions into an instantaneous part and retarded part. It is shown that only the retarded part contributes to the irreversible radiation loss and the instantaneous part describes the space charge related effects. We further apply this theory to study the coherent synchrotron radiation energy loss, which hopefully will reshape our understanding of coherent radiation and collective interactions.
RESUMEN
BACKGROUND: The black goji berry (Lycium ruthenicum Murr.) is known for its abundance of high-quality natural antioxidants, particularly anthocyanins. Black goji berry anthocyanins (BGA) are receiving increasing attention because of their high safety and beneficial biological activities. Studies have shown that oxidative stress is a key factor affecting aging, whereas antioxidants are critical preventive and delaying strategies. RESULTS: In the present study, we investigated the potential anti-aging effects and mechanism of BGA using the Caenorhabditis elegans model. We found that BGA prolonged the mean lifespan of nematodes and improve their healthspan, including locomotion, pharyngeal pumping rate and stress resistance. Subsequently, we observed a significant decrease in reactive oxygen species and malondialdehyde levels in nematodes after administering BGA. Moreover, BGA enhanced the activities of the antioxidant enzymes superoxide dismutase and catalase, and elevated the glutathione disulfide/glutathione ratio. We confirmed that BGA exerted excellent antioxidative stress activity in nematodes, which may contribute substantially to its anti-aging effects. The health benefits of BGA in C. elegans might be closely related to petunidin-3-O-glucoside, the most abundant anthocyanin in BGA. Further mechanistic investigation revealed that the JNK-1 and DAF-16/FOXO pathways, rather than the calorie restriction pathway, were responsible for the antioxidant stress and life-prolonging effects of BGA in nematodes. CONCLUSION: Our research provides a theoretical foundation for studying the anti-aging effect of BGA and a basis for developing black goji berry and its anthocyanins as functional foods with anti-aging and antioxidative stress benefits. © 2024 Society of Chemical Industry.
RESUMEN
OBJECTIVES: This study aims to investigate radiologists' interpretation errors when reading dense screening mammograms using a radiomics-based artificial intelligence approach. METHODS: Thirty-six radiologists from China and Australia read 60 dense mammograms. For each cohort, we identified normal areas that looked suspicious of cancer and the malignant areas containing cancers. Then radiomic features were extracted from these identified areas and random forest models were trained to recognize the areas that were most frequently linked to diagnostic errors within each cohort. The performance of the model and discriminatory power of significant radiomic features were assessed. RESULTS: We found that in the Chinese cohort, the AUC values for predicting false positives were 0.864 (CC) and 0.829 (MLO), while in the Australian cohort, they were 0.652 (CC) and 0.747 (MLO). For false negatives, the AUC values in the Chinese cohort were 0.677 (CC) and 0.673 (MLO), and in the Australian cohort, they were 0.600 (CC) and 0.505 (MLO). In both cohorts, regions with higher Gabor and maximum response filter outputs were more prone to false positives, while areas with significant intensity changes and coarse textures were more likely to yield false negatives. CONCLUSIONS: This cohort-based pipeline proves effective in identifying common errors for specific reader cohorts based on image-derived radiomic features. ADVANCES IN KNOWLEDGE: This study demonstrates that radiomics-based AI can effectively identify and predict radiologists' interpretation errors in dense mammograms, with distinct radiomic features linked to false positives and false negatives in Chinese and Australian cohorts.
RESUMEN
OBJECTIVES: We aimed to synthesise evidence from prospective studies of digital breast tomosynthesis (DBT) screening to assess its effectiveness compared to digital mammography (DM). Specifically, we examined whether DBT reduces interval cancer rates (ICRs) in population breast cancer screening. MATERIALS AND METHODS: We performed a systematic review and meta-analysis of DBT screening studies (identified from January 2013 to March 2024). We included both RCTs and non-randomised prospective studies that used an independent comparison for our primary outcome ICRs. The risk of bias was assessed with QUADAS-2. We compared the ICR, cancer detection rate (CDR), and recall rate of DBT and DM screening using random effects meta-analysis models. Subgroup analyses estimated outcomes by study design. Sensitivity analyses estimated absolute effects from relative effects. RESULTS: Ten prospective studies (three RCTs, seven non-randomised) were eligible; all had a low risk of bias. There were 205,245 DBT-screened and 306,476 DM-screened participants with follow-up for interval cancer data. The pooled absolute ICR did not significantly differ between DBT and DM: -2.92 per 10,000 screens (95% CI: -6.39 to 0.54); however subsequent subgroup analysis indicated certain study designs may have biased this ICR estimate. Pooled ICR from studies that only sampled groups from the same time and region indicated DBT led to 5.50 less IC per 10,000 screens (95% CI: -9.47 to -1.54). Estimates from subgroup analysis that compared randomised and non-randomised trials did not significantly differ. CONCLUSION: This meta-analysis provides suggestive evidence that DBT decreases ICR relative to DM screening; further evidence is needed to reduce uncertainty regarding ICR differences between DBT and DM. KEY POINTS: Question Does DBT have long-term benefits over standard DM? Finding We find suggestive evidence in our primary analysis and stronger evidence in a follow-up analysis that DBT reduces interval cancers. Clinical relevance This meta-analysis provides the first indication that DBT may detect additional cancers that are clinically meaningful, based on suggestive evidence of a reduction in ICR. This finding does not preclude the simultaneous possibility of overdiagnosis.
RESUMEN
Purpose: Accurate interpretation of mammograms presents challenges. Tailoring mammography training to reader profiles holds the promise of an effective strategy to reduce these errors. This proof-of-concept study investigated the feasibility of employing convolutional neural networks (CNNs) with transfer learning to categorize regions associated with false-positive (FP) errors within screening mammograms into categories of "low" or "high" likelihood of being a false-positive detection for radiologists sharing similar geographic characteristics. Approach: Mammography test sets assessed by two geographically distant cohorts of radiologists (cohorts A and B) were collected. FP patches within these mammograms were segmented and categorized as "difficult" or "easy" based on the number of readers committing FP errors. Patches outside 1.5 times the interquartile range above the upper quartile were labeled as difficult, whereas the remaining patches were labeled as easy. Using transfer learning, a patch-wise CNN model for binary patch classification was developed utilizing ResNet as the feature extractor, with modified fully connected layers for the target task. Model performance was assessed using 10-fold cross-validation. Results: Compared with other architectures, the transferred ResNet-50 achieved the highest performance, obtaining receiver operating characteristics area under the curve values of 0.933 ( ± 0.012 ) and 0.975 ( ± 0.011 ) on the validation sets for cohorts A and B, respectively. Conclusions: The findings highlight the feasibility of employing CNN-based transfer learning to predict the difficulty levels of local FP patches in screening mammograms for specific radiologist cohort with similar geographic characteristics.
RESUMEN
This study aimed to investigate the morphologies, biocompatibility, and formation mechanism of lysozyme-hyaluronic acid complexes in the presence of various Hofmeister salts. During the complexation of lysozyme (Lys) and hyaluronic acid (HA), salts can control the formation of colloidal nanoparticles, amyloid-like aggregates, and amorphous aggregates. Circular dichroism spectra revealed that the α-helix content of Lys involved in complexation significantly increased from 21.40 % to 34.19 %, whereas the ß-sheet content significantly decreased from 38.65 % to 24.42 % with increasing salt concentration. The fluorescence spectra indicated that the number of binding sites for HA and Lys decreased from 2.19 to 0.63 as the salt concentration increased from 0 to 300 mM, which was consistent with the different anion-specific effects (NaCl < NaBr < NaI). Interestingly, in vitro experiment results demonstrated that colloidal nanoparticles and amorphous aggregates have good biocompatibility, with NCM460 cell viability exceeding 85.92 %, whereas amyloid like aggregates exhibit certain cytotoxicity, with cell viability significantly reduced to 50.47 %. Overall, these findings provide a better understanding of the conformational changes of Lys involved in complexation with HA in the presence of salts, expanding its application in the food and pharmaceutical industries.
RESUMEN
Macrophage polarization facilitates the inflammatory response and intensified fibrosis in the silicosis microenvironment by a mechanism related to macrophage pyroptosis, although the upstream target remains poorly defined. Currently, there are few reports on the development of drugs that alleviate macrophage polarization by dampening pyroptosis. The present study aims to explore the mechanics of silica mediating macrophage polarization and to investigate whether quercetin (Que) can depolarize macrophages with this mechanism. Silica processing led to prominent M1 polarization of macrophages. Additionally, significant macrophage polarization could be detected in the lung tissue of mice with airway-perfused silica. Further investigation turned out that pronounced mitochondria damage, mtDNA cytoplasmic ectomy, and pyroptosis occurred in response to silica. Nevertheless, Que treatment could effectively attenuate silica-induced mitochondria damage and pyroptosis as demonstrated in vitro and in vivo. Further exploration presented Que could bind to TOM70 and restore silica-induced mitochondrial damage. More importantly, the M1 polarization of macrophage was depressed with the co-treatment of Que and silica, wherein the inflammatory response and pulmonary fibrosis were also mitigated without obvious damage to vital organs. In conclusion, these findings proved that silica leads to mitochondrial damage, thereby evoking pyroptosis and promoting macrophage M1 polarization. Que could bind to TOM70 and restore its function, suppressing mitochondrial damage and pyroptosis, and depolarizing macrophages to reduce fibrosis, which provides a promising strategy for silicosis treatment in the future.
RESUMEN
The current throughput of conventional organic chemical synthesis is usually a few experiments for each operator per day. We develop a robotic system for ultra-high-throughput chemical synthesis, online characterization, and large-scale condition screening of photocatalytic reactions, based on the liquid-core waveguide, microfluidic liquid-handling, and artificial intelligence techniques. The system is capable of performing automated reactant mixture preparation, changing, introduction, ultra-fast photocatalytic reactions in seconds, online spectroscopic detection of the reaction product, and screening of different reaction conditions. We apply the system in large-scale screening of 12,000 reaction conditions of a photocatalytic [2 + 2] cycloaddition reaction including multiple continuous and discrete variables, reaching an ultra-high throughput up to 10,000 reaction conditions per day. Based on the data, AI-assisted cross-substrate/photocatalyst prediction is conducted.
RESUMEN
Pancreatic cancer is distinguished by an immunosuppressive tumor microenvironment (TME) that facilitates cancer progression. The assembly of the TME involves numerous contributing factors. Migrasomes, recently identified as cellular organelles in migrating cells, play a pivotal role in intercellular signaling. However, research into their involvement in cancers remains nascent. Thus far, whether pancreatic cancer cells generate migrasomes and their potential role in TME formation remains unexplored. In this study, it was found that both murine and human pancreatic cancer cells could indeed generate migrasomes, termed pancreatic cancer cell-derived migrasomes (PCDMs), which actively promote cancer progression. Moreover, utilizing chemokine antibody arrays and quantitative mass spectrometry analysis, we observed significant differences between the chemokines, cytokines, and proteins present in PCDMs compared to their originating cell bodies. Notably, PCDMs exhibited an enrichment of immunosuppression-inducing factors. Furthermore, macrophages could directly uptake PCDMs, leading to the expression of high levels of M2-like markers and secretion of tumor-promoting factors. PCDM-induced macrophages played a pivotal role in inhibiting T cell proliferation and activation partially through ARG-1. In summary, this study provides compelling evidence that pancreatic cancer cells generate migrasomes, which play a crucial role in promoting tumor progression by contributing to an immunosuppressive TME. The exploration of migrasomes as a therapeutic target could pave the way for the development of tailored immunotherapies for pancreatic cancer.
RESUMEN
BACKGROUND: Cerebral microbleeds (CMBs) are common and varied in patients receiving extracorporeal membrane oxygenation (ECMO). Here, the authors describe CMB findings in patients receiving ECMO and their association with clinical factors. METHODS AND RESULTS: A total of 138 patients receiving ECMO were enrolled and categorized as venovenous and venoarterial. Blood coagulation profiles during ECMO support and Glasgow Coma Scale (GCS) scores within 7 days were recorded. Patients with CMBs exhibited prolonged activated clotting time (P<0.001), decreased fibrinogen levels (P<0.001), reduced platelet counts (P<0.001), and extended prothrombin time (P<0.001). A significant correlation (P<0.05) was observed between the presence of CMBs and most coagulation parameters among all patients. Patients with venoarterial ECMO had significantly higher activated partial thromboplastin time, activated clotting time, and prothrombin time compared with those with venovenous ECMO (all P<0.05). Patients with a less severe CMB burden exhibited higher GCS scores and better neurological injury outcomes at both 7 and 90 days. CMB burden in all patients with ECMO was significantly correlated (P<0.05) with most blood coagulation profiles and neurological injury. CONCLUSIONS: CMB burdens after ECMO are common, varied, and associated with a variety of clinical conditions. These findings may guide ECMO management.
Asunto(s)
Hemorragia Cerebral , Oxigenación por Membrana Extracorpórea , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Hemorragia Cerebral/etiología , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/sangre , Adulto , Coagulación Sanguínea , Estudios Retrospectivos , Resultado del Tratamiento , Escala de Coma de Glasgow , Anciano , Factores de RiesgoRESUMEN
In order to address the issue of insufficient ability to identify and measure the key information of non-stationary signals collected in practical industrial fields such as logistics transportation, state detection, and fault diagnosis, this paper proposes a method to identify and measure the key information based on variational mode decomposition (VMD), convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and support vector machine (SVM). First, the non-stationary signal is reconstructed by using VMD and linear correlation decomposition. Second, the feature matrix is constructed according to the upper envelope feature, moving kurtosis, and moving root mean square. Finally, CNN-LSTM-SVM is input to identify and measure the key features. The experimental results demonstrate that the proposed method exhibits an outstanding performance on both synthetic and actual collected signals, with recognition accuracies of 99.17% and 99.02%, respectively.
RESUMEN
Elucidating the combined exposure of agrochemicals is essential for safeguarding human health and agroecosystem safety. A rapid and high-sensitivity UHPLC-MS/MS method was developed for simultaneous quantification of nine compounds in sorghum by an assembly-line optimization process with a limit of quantitation of 0.001 mg/kg. The concentration variation of atrazine, quinclorac, fluroxypyr-meptyl and metabolites was reflected by terminal magnitudes of ≤0.0665 mg/kg. Additionally, atrazine was dealkylated to deethyl atrazine and desethyl desisopropyl atrazine at concentrations of 0.0014-0.0058 mg/kg during the sorghum harvest. Acceptable health hazardous of atrazine and quinclorac for all life cycle populations were comparatively assessed via deterministic and probabilistic models, in which atrazine gained an 83.55 % share of cumulative dietary risks. Rural residents had significantly higher risks than urban residents, and children were the most sensitive group. Despite the low health risks, combined exposure to herbicides and their metabolites should be continuously stressed, given their cumulative amplification effects.
RESUMEN
Human prenatal skin is populated by innate immune cells, including macrophages, but whether they act solely in immunity or have additional functions in morphogenesis is unclear. Here we assembled a comprehensive multi-omics reference atlas of prenatal human skin (7-17 post-conception weeks), combining single-cell and spatial transcriptomics data, to characterize the microanatomical tissue niches of the skin. This atlas revealed that crosstalk between non-immune and immune cells underpins the formation of hair follicles, is implicated in scarless wound healing and is crucial for skin angiogenesis. We systematically compared a hair-bearing skin organoid (SkO) model derived from human embryonic stem cells and induced pluripotent stem cells to prenatal and adult skin1. The SkO model closely recapitulated in vivo skin epidermal and dermal cell types during hair follicle development and expression of genes implicated in the pathogenesis of genetic hair and skin disorders. However, the SkO model lacked immune cells and had markedly reduced endothelial cell heterogeneity and quantity. Our in vivo prenatal skin cell atlas indicated that macrophages and macrophage-derived growth factors have a role in driving endothelial development. Indeed, vascular network remodelling was enhanced following transfer of autologous macrophages derived from induced pluripotent stem cells into SkO cultures. Innate immune cells are therefore key players in skin morphogenesis beyond their conventional role in immunity, a function they achieve through crosstalk with non-immune cells.
RESUMEN
BACKGROUND: There is limited evidence on the performance of digital breast tomosynthesis (DBT) in populations at increased risk of breast cancer. Our objective was to systematically review evidence on the performance of DBT versus digital mammography (DM) in women with a family history of breast cancer (FHBC). METHODS: We searched 5 databases (2011-January 2024) for studies comparing DBT and DM in women with a FHBC that reported any measure of cancer detection, recall, sensitivity and specificity. Findings were presented using a descriptive and narrative approach. Risk of bias was assessed using QUADAS-2/C. RESULTS: Five (4 screening, 1 diagnostic) studies were included (total 3089 DBT, 3024 DM) with most (4/5) being prospective including 1 RCT. All studies were assessed as being at high risk of bias or applicability concern. Four screening studies reported recall rate (range: DBT: 2.7%-4.5%, DM: 2.8%-11.5%) with 3 reporting DBT had lower rates than DM. Cancer detection rates (CDR) were reported in the same studies (DBT: 5.1-11.6 per 1000, DM: 3.8-8.3); 3 reported higher CDR for DBT (vs. DM), and 1 reported same CDR for both. Compared with DM, higher values for sensitivity, specificity and PPV for DBT were reported in 2 studies. CONCLUSION: This review provides early evidence that DBT may outperform DM for screening women with a FHBC. Our findings support further evaluation of DBT in this population. However, summarized findings were based on few studies and participants, and high-quality studies with improved methodology are needed to address biases identified in our review.
RESUMEN
Atmospheric cold plasma (ACP), a novel non-thermal processing technology, generates active substances that stimulate protein oxidation in protein-based foods. Nevertheless, the precise mechanism through which ACP initiates amino acid oxidation on protein side chains remains ambiguous. This study primarily aimed to elucidate the mechanism of ACP-induced oxidation of coconut globulin, focusing on the process of amino acid oxidation. Analysis of protein oxidation products indicated a positive correlation between the extent of protein oxidation and the voltage and duration of ACP treatment. By analyzing the composition of amino acids and active ingredients, the study identified that the most significant changes amino acids were methionine, cysteine, and arginine, and â¢OH was the primary free radicals. The findings from oxidation kinetics and dynamic simulation indicated that â¢OH predominantly oxidized methionine, followed by L-cysteine and L-arginine. These results offer theoretical framework for understanding protein oxidation by ACP and suggest potential applications in protein-based food.
RESUMEN
Antiscalant disposal in reverse osmosis concentrate (ROC) treatment is a significant obstacle in desalination. This study investigated the adsorption performance of LDHs for removing 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP). CaFe-LDH presented a specific adsorption behavior and ultrahigh adsorption capacity for HEDP, with a maximum adsorption capacity of 335.7 mg P/g (1116.5 mg HEDP/g) at pH 7.0. X-ray diffraction (XRD) demonstrated that HEDP adsorption induced a structural transformation of CaFe-LDH from a layered configuration to a highly ordered structure, leading to a noticeable phase transition. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy further confirmed that two distinct binding modes of HEDP, relating to chelation with Ca2+ and adsorption on Fe3+ simultaneously, are connected by phosphonic acid groups (-C-PO(OH)2), forming the CaFe-HEDP complex. X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the CaFe-HEDP ternary complex exhibits a highly ordered arrangement in an oxygen-bridged framework. The construction of an oxygen-coordinated framework contributes to the incorporation of more HEDP into CaFe-LDH, leading to a well-aligned lattice in the new phase. These findings provide valuable insights into developing novel LDH-based adsorbents for removing phosphorus-containing antiscalants, establishing a sustainable approach to ROC management, and potential environmental risk reduction.