Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.908
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Genom ; : 100605, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38981476

RESUMEN

Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.

2.
ACS Macro Lett ; : 935-942, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007898

RESUMEN

Inspired by advances in cryopreservation techniques, which are essential for modern biomedical applications, there is a special interest in the ice recrystallization inhibition (IRI) of the antifreeze protein (AFPs) mimics. There are in-depth studies on synthetic materials mimicking AFPs, from simple molecular structure levels to complex self-assemblies. Herein, we report the valence-dependent IRI activity of colloidal organic molecules (CMs). The CMs were prepared through polymerization-induced particle-assembly (PIPA) of the ABC-type triblock terpolymer of poly(acryloxyethyl trimethylammonium chloride)-b-poly(benzyl acrylate)-b-poly(diacetone acrylamide) (PATAC-b-PBzA-b-PDAAM) at high monomer conversions. Stabilized by the cationic block of PATAC, the strong intermolecular H-bonding and incompatibility of the PDAAM block with PBzA contributed to the in situ formation of Janus particles (AX1) beyond the initial spherical seed particles (AX0), as well as the high valency clusters of linear AX2 and trigonal AX3. Their distribution was controlled mainly by the polymerization degrees (DPs) of PATAC and PDAAM blocks. IRI activity results of the CMs suggest that the higher fraction of AX1 results in the better IRI activity. Increasing the fraction of AX1 from 27% to 65% led to a decrease of the mean grain size from 39.8% to 10.9% and a depressed growth rate of ice crystals by 58%. Moreover, by replacing the PDAAM block with the temperature-responsive one of poly(N-isopropylacrylamide) (PNIPAM), temperature-adjustable IRI activity was observed, which is well related to the reversible transition of AX0 to AX1, providing a new idea for the molecular design of amphiphilic polymer nanoparticle-based IRI activity materials.

3.
Environ Pollut ; : 124475, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950843

RESUMEN

Air pollution in urban environments exhibits large spatial and temporal variations due to high heterogeneous air flow and emissions. To address the complexity of local air pollutant dynamics, a comprehensive large-eddy simulation using the PALM model system v6.0 was conducted. The distribution of flow and vehicle emitted aerosol particles in a realistic urban environment in Malmö, Sweden, was studied and evaluated against on-site measurements made using portable instrumentation on a spring morning in 2021. The canyon transport mechanisms were investigated, and the convective and turbulent mass-transport rates compared to clarify their role in aerosol transport. The horizontal distribution of aerosols showed acceptable evaluation metrics for both mass and number. Flow and pollutant concentrations were more complex than those in idealized street canyon networks. Vertical turbulent mass-transport rate was found to dominate the mass transport process compared with the convective transport rate, contributing more than 70% of the pollutant transport process. Our findings highlight the necessity of examining various aerosol metric due their distinct dispersion behaviour. This study introduces a comprehensive high-resolution modelling framework that accounts for dynamic meteorological and aerosol background boundary conditions, real-time traffic emission, and detailed building features, offering a robust toll for local urban air quality assessment.

4.
Front Pharmacol ; 15: 1384418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983912

RESUMEN

Objective: The study aims to investigate the protective effect of Mingjing granule (MG) in a fibrovascular membrane rat model of neovascular age-related macular degeneration (nAMD) and explore the underlying mechanism. Methods: The nAMD fibrovascular membrane model was established by two-stage laser photocoagulation. BN rats were randomly divided into four groups: the model group was gavaged with distilled water, the anti-VEGF group was given an intravitreous injection of ranibizumab, the MG + anti-VEGF group was gavaged with MG combined with an intravitreous injection of ranibizumab, and the normal group not modeled only fed conventionally. Lesions were evaluated by color fundus photograph, optical coherence tomography, fundus fluorescein angiography, and retinal pigment epithelial-choroid-sclera flat mount. The changes in the retinal structure were observed by histopathology. The expression of inflammatory cell markers F4/80, Iba-1, and glial fibrillary acidic protein (GFAP); the fibrosis-related factors collagen-1, fibronectin, α-smooth muscle actin (α-SMA), and transforming growth factor-beta (TGF-ß); and the complement system-related factors C3a and C3aR in the retina were detected by immunofluorescence or qRT-PCR. Results: The current study revealed that MG + anti-VEGF administration more significantly reduced the thickness of fibrovascular lesions, suppressed vascular leakage (exudation area and mean density value), inhibited the area of fibrovascular lesions, and restrained the formation of the fibrovascular membrane than the anti-VEGF agent alone in the two-stage laser-induced rat model. The fluorescence intensities of F4/80, Iba-1, collagen-1, fibronectin, TGF-ß, and C3aR showed more significant inhibition in MG + anti-VEGF-treated rats than the anti-VEGF agent alone. The mRNA expression levels of F4/80, Iba-1, GFAP, collagen-1, fibronectin, α-SMA, TGF-ß, and C3a showed lower levels in rats treated with MG + anti-VEGF than the anti-VEGF agent alone. Conclusion: Combining MG with anti-VEGF treatment inhibits the growth of the fibrovascular membrane more effectively than using anti-VEGF treatment alone. The mechanism underlying this effect may involve limiting inflammatory cell aggregation, controlling complement system activation, and decreasing the expression of the fibrotic protein.

5.
Sci Rep ; 14(1): 15735, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977721

RESUMEN

The influence of precipitated nanophases on the mechanical properties of Fe-based amorphous nanocrystalline alloys is an urgent issue to be explored. Two amorphous nanocrystalline alloys, i.e., (Fe0.9Ni0.1)86B14 and (Fe0.7Ni0.3)86B14 containing nanophase of the body-centered cubic and face-centered cubic structures, respectively, were selected to investigate the effect of the structure and volume fraction of nanophase on their mechanical properties. The results of nanoindentation experiments and the calculation of the volume and size of the shear transition zone reveal that the two alloys show different mechanical properties. When the volume fraction of the nanophase in (Fe0.9Ni0.1)86B14 is larger than 50%, the elastic modulus is increased suddenly and the volume and size of the shear transition zone is decreased dramatically, while no dramatic change occurs in (Fe0.7Ni0.3)86B14. Moreover, it was found by using molecular dynamics simulations that the main reason for these abnormal mechanical properties is the change of cluster type in the system due to the incorporation of nanophases with different structures.

6.
Plants (Basel) ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38999590

RESUMEN

Due to global warming and increased human activity, the wild population of Thuja koraiensis Nakai (T. koraiensis) has dropped, placing it in danger. An understanding of the response of T. koraiensis to climate change and the determination of priority conservation areas are tremendously critical for proper conservation. Using sixty-nine T. koraiensis distribution points and seven environmental factors, the Maxent model was used to predict potentially suitable areas and spatial variation patterns of T. koraiensis and the Marxan conservation planning model was used to evaluate conservation gap areas. Research shows that the dominant environmental factors affecting the distribution of potentially suitable areas for T. koraiensis included elevation, precipitation of the driest month, isothermality and precipitation of the wettest quarter. Under the current climatic conditions, highly suitable areas for T. koraiensis are mainly distributed in the Changbai Mountains within Samjiyon County and Baishan City, the Hamgyong Mountains within the western part of Hamgyong-Bukto Province, and the T'aeback-Sanmaek Mountains within Gangwon-do, Kumgangsan Special Administrative Region and Kangwon-do. Under future climate conditions, suitable areas for T. koraiensis show a decreasing trend, and the suitable area will be reduced to higher elevations, and the Hamgyong Mountains may become a refuge. Based on GAP analysis, 69.69% of the priority conservation areas of T. koraiensis are located outside of the nature reserve, and these conservation gap areas are primarily in the southern part of the Changbai Mountains and Kangwon-do.

7.
Sci Total Environ ; 946: 174313, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964406

RESUMEN

Nervous system diseases are a global health problem, and with the increase in the elderly population around the world, their incidence will also increase. Harmful substances in the environment are closely related to the occurrence of nervous system diseases. China is a large agricultural country, and thus the insecticide cyfluthrin has been widely used. Cyfluthrin is neurotoxic, but the mechanism of this injury is not clear. Inflammation is an important mechanism for the occurrence of nervous system diseases. Mitochondria are the main regulators of the inflammatory response, and various cellular responses, including autophagy, directly affect the regulation of inflammatory processes. Mitochondrial damage is related to mitochondrial quality control (MQC) and PTEN-induced kinase 1 (PINK1). As an anti-inflammatory factor, stimulator of interferon genes (STING) participates in the regulation of inflammation. However, the relationship between STING and mitochondria in the process of cyfluthrin-induced nerve injury is unclear. This study established in vivo and in vitro models of cyfluthrin exposure to explore the role of MQC and to clarify the mechanism of action of STING and PINK1. Our results showed that cyfluthrin can increase the reactive oxygen species (ROS) level, resulting in mitochondrial damage and inflammation. In this process, an imbalance in MQC leads to the aggravation of mitochondrial damage, and high STING expression drives the occurrence of inflammation. We established a differential expression model of STING and PINK1 to further determine the underlying mechanism and found that the interaction between STING and PINK1 regulates MQC to affect the levels of mitochondrial damage and inflammation. When STING and PINK1 expression are downregulated, mitochondrial damage and STING-induced inflammation are significantly alleviated. In summary, a synergistic effect between STING and PINK1 on cyfluthrin-induced neuroinflammation may exist, which leads to an imbalance in MQC by inhibiting mitochondrial biogenesis and division/fusion, and PINK1 can reduce STING-driven inflammation.

8.
Environ Geochem Health ; 46(8): 270, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954122

RESUMEN

Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.


Asunto(s)
Radioisótopos de Cesio , Minería , Contaminantes Radiactivos del Suelo , Medición de Riesgo , China , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Cesio/análisis , Humanos , Radioisótopos de Estroncio/análisis , Cesio/análisis , Ciudades , Suelo/química , Método de Montecarlo , Monitoreo de Radiación
9.
Soc Sci Med ; 354: 117075, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38959816

RESUMEN

With the widespread prevalence of mobile devices, ecological momentary assessment (EMA) can be combined with geospatial data acquired through geographic techniques like global positioning system (GPS) and geographic information system. This technique enables the consideration of individuals' health and behavior outcomes of momentary exposures in spatial contexts, mostly referred to as "geographic ecological momentary assessment" or "geographically explicit EMA" (GEMA). However, the definition, scope, methods, and applications of GEMA remain unclear and unconsolidated. To fill this research gap, we conducted a systematic review to synthesize the methodological insights, identify common research interests and applications, and furnish recommendations for future GEMA studies. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines to systematically search peer-reviewed studies from six electronic databases in 2022. Screening and eligibility were conducted following inclusion criteria. The risk of bias assessment was performed, and narrative synthesis was presented for all studies. From the initial search of 957 publications, we identified 47 articles included in the review. In public health, GEMA was utilized to measure various outcomes, such as psychological health, physical and physiological health, substance use, social behavior, and physical activity. GEMA serves multiple research purposes: 1) enabling location-based EMA sampling, 2) quantifying participants' mobility patterns, 3) deriving exposure variables, 4) describing spatial patterns of outcome variables, and 5) performing data linkage or triangulation. GEMA has advanced traditional EMA sampling strategies and enabled location-based sampling by detecting location changes and specified geofences. Furthermore, advances in mobile technology have prompted considerations of additional sensor-based data in GEMA. Our results highlight the efficacy and feasibility of GEMA in public health research. Finally, we discuss sampling strategy, data privacy and confidentiality, measurement validity, mobile applications and technologies, and GPS accuracy and missing data in the context of current and future public health research that uses GEMA.

10.
J Hazard Mater ; 476: 135115, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38976962

RESUMEN

A label-free fluorescent sensing strategy for the rapid and highly sensitive detection of Pb2+ was developed by integrating Pb2+ DNAzyme-specific cleavage activity and a tetrahedral DNA nanostructure (TDN)-enhanced hyperbranched hybridization chain reaction (hHCR). This strategy provides accelerated reaction rates because of the highly effective collision probability and enriched local concentrations from the spatial confinement of the TDN, thus showing a higher detection sensitivity and a more rapid detection process. Moreover, a hairpin probe based on a G-triplex instead of a G-quadruplex or chemical modification makes hybridization chain reaction more controlled and flexible, greatly improving signal amplification capacities and eliminating labeled DNA probes. The enhanced reaction rates and improved signal amplification efficiency endowed the biosensors with high sensitivity and a rapid response. The label-free detection of Pb2+ based on G-triplex combined with thioflavin T can be achieved with a detection limit as low as 1.8 pM in 25 min. The proposed Pb2+-sensing platform was also demonstrated to be applicable for Pb2+ detection in tap water, river water, shrimp, rice, and soil samples, thus showing great potential for food safety and environmental monitoring.

11.
Bioengineering (Basel) ; 11(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927781

RESUMEN

Automatically segmenting polyps from colonoscopy videos is crucial for developing computer-assisted diagnostic systems for colorectal cancer. Existing automatic polyp segmentation methods often struggle to fulfill the real-time demands of clinical applications due to their substantial parameter count and computational load, especially those based on Transformer architectures. To tackle these challenges, a novel lightweight long-range context fusion network, named LightCF-Net, is proposed in this paper. This network attempts to model long-range spatial dependencies while maintaining real-time performance, to better distinguish polyps from background noise and thus improve segmentation accuracy. A novel Fusion Attention Encoder (FAEncoder) is designed in the proposed network, which integrates Large Kernel Attention (LKA) and channel attention mechanisms to extract deep representational features of polyps and unearth long-range dependencies. Furthermore, a newly designed Visual Attention Mamba module (VAM) is added to the skip connections, modeling long-range context dependencies in the encoder-extracted features and reducing background noise interference through the attention mechanism. Finally, a Pyramid Split Attention module (PSA) is used in the bottleneck layer to extract richer multi-scale contextual features. The proposed method was thoroughly evaluated on four renowned polyp segmentation datasets: Kvasir-SEG, CVC-ClinicDB, BKAI-IGH, and ETIS. Experimental findings demonstrate that the proposed method delivers higher segmentation accuracy in less time, consistently outperforming the most advanced lightweight polyp segmentation networks.

12.
Biomol Biomed ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38912889

RESUMEN

Knee osteoarthritis (KOA) is one of the most common degenerative joint diseases in the elderly worldwide. The primary lesion in patients with KOA is the degeneration of articular cartilage. This study aimed to observe the biological effects of cyclic negative pressure on C28/I2 chondrocytes and to elucidate the underlying molecular mechanisms. We designed a bi-directional intelligent micro-pressure control device for cyclic negative pressure intervention on C28/I2 chondrocytes. Chondrocyte vitality and proliferation were assessed using Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. The extracellular matrix was analyzed using real-time fluorescence quantitative polymerase chain reaction (PCR) and western blot, while the molecular mechanism of the chondrocyte response to cyclic negative pressure was explored through mRNA sequencing. Experimental data demonstrated that cyclic negative pressure promoted chondrocyte proliferation and upregulated the expression of chondrocyte-specific protein, namely the collagen type II alpha 1 chain (COL2A1) protein, and the transcription factor SRY-box transcription factor 9 (SOX9). Additionally, RNA sequencing analysis revealed that the gene levels of insulin-like growth factor 2 (IGF-2) and early growth response 1 (EGR-1) were significantly elevated in the cyclic negative pressure group. This study demonstrates that cyclic negative pressure stimulates the proliferation of C28/I2 chondrocytes by promoting the expression of EGR-1 and IGF-2. This new discovery may provide novel insights into cartilage health and KOA prevention.

13.
Food Res Int ; 190: 114607, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945617

RESUMEN

Salmonella, a prominent foodborne pathogen, has posed enduring challenges to the advancement of food safety and global public health. The escalating concern over antibiotic misuse, resulting in the excessive presence of drug residues in animal-derived food products, necessitates urgent exploration of alternative strategies for Salmonella control. Bacteriophages emerge as promising green biocontrol agents against pathogenic bacteria. This study delineates the identification of two novel virulent Salmonella phages, namely phage vB_SalS_ABTNLsp11241 (referred to as sp11241) and phage 8-19 (referred to as 8-19). Both phages exhibited efficient infectivity against Salmonella enterica serotype Enteritidis (SE). Furthermore, this study evaluated the effectiveness of two phages to control SE in three different foods (whole chicken eggs, raw chicken meat, and lettuce) at different MOIs (1, 100, and 10000) at 4°C. It's worth noting that sp11241 and 8-19 achieved complete elimination of SE on eggs after 3 h and 6 h at MOI = 100, and after 2 h and 5 h at MOI = 10000, respectively. After 12 h of treatment with sp11241, a maximum reduction of 3.17 log10 CFU/mL in SE was achieved on raw chicken meat, and a maximum reduction of 3.00 log10 CFU/mL was achieved on lettuce. Phage 8-19 has the same effect on lettuce as sp11241, but is slightly less effective than sp11241 on chicken meat (a maximum 2.69 log10 CFU/mL reduction). In conclusion, sp11241 and 8-19 exhibit considerable potential for controlling Salmonella contamination in food at a low temperature and represent viable candidates as green antibacterial agents for food applications.


Asunto(s)
Pollos , Huevos , Microbiología de Alimentos , Lactuca , Carne , Fagos de Salmonella , Salmonella enteritidis , Lactuca/microbiología , Animales , Huevos/microbiología , Huevos/virología , Pollos/microbiología , Salmonella enteritidis/virología , Carne/microbiología , Inocuidad de los Alimentos , Contaminación de Alimentos/prevención & control , Virulencia
14.
Am Surg ; : 31348241260274, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848748

RESUMEN

PURPOSE: The Boston naming test (BNT), as a simple, fast, and easily administered neuropsychological test, was demonstrated to be useful in detecting language function. In this study, BNT was investigated whether it could be a screening tool for early postoperative cognitive dysfunction (POCD). METHODS: This prospective observational cohort study included 132 major noncardiac surgery patients and 81 nonsurgical controls. All participants underwent a mini-mental state examination (MMSE) and BNT 1 day before and 7 days after surgery. Early POCD was assessed by reliable change index and control group results. RESULTS: Seven days after surgery, among 132 patients, POCD was detected in 30 (22.7%) patients (95% CI, 15.5%-30.0%) based on MMSE, and 45 (34.1%) patients (95% CI, 26.3%-41.9%) were found with postoperative language function decline based on BNT and MMSE. Agreement between the BNT spontaneous naming and MMSE total scoring was moderate (Kappa .523), and the sensitivity of BNT spontaneous naming for detecting early POCD was .767. Further analysis showed that areas under receiver operating characteristics curves (AUC) did not show statistically significant differences when BNT spontaneous naming (AUC .862) was compared with MMSE language functional subtests (AUC .889), or non-language functional subtests (AUC .933). CONCLUSION: This study indicates the feasibility of implementing the BNT spontaneous naming test to screen early POCD in elderly patients after major noncardiac surgery.

15.
J Virol ; : e0046724, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864621

RESUMEN

Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.

16.
Acta Pharm Sin B ; 14(6): 2520-2536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828143

RESUMEN

Type I interferon (IFN) inhibits a wide spectrum of viruses through stimulating the expression of antiviral proteins. As an IFN-induced protein, myxovirus resistance B (MXB) protein was reported to inhibit multiple highly pathogenic human viruses. It remains to be determined whether MXB employs a common mechanism to restrict different viruses. Here, we find that IFN alters the subcellular localization of hundreds of host proteins, and this IFN effect is partially lost upon MXB depletion. The results of our mechanistic study reveal that MXB recognizes vimentin (VIM) and recruits protein kinase B (AKT) to phosphorylate VIM at amino acid S38, which leads to reorganization of the VIM network and impairment of intracellular trafficking of virus protein complexes, hence causing a restriction of virus infection. These results highlight a new function of MXB in modulating VIM-mediated trafficking, which may lead towards a novel broad-spectrum antiviral strategy to control a large group of viruses that depend on VIM for successful replication.

17.
Med Rev (2021) ; 4(3): 239-243, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919402

RESUMEN

Investigating the fine structure of mitochondria and their dynamic interactions with other organelles is crucial for unraveling the mechanisms underlying mitochondrial-related diseases. The development of super-resolution techniques has provided powerful visualization tools for mitochondrial research, which is significant for investigating mitochondrial cristae structure, the localization of mitochondrial-related protein complex, and the interactions between mitochondria and other organelles. In this perspective, we introduce several advanced super-resolution techniques and their applications in mitochondrial research, and discuss the potential roles these techniques may play in future studies of mitochondria.

18.
Front Oncol ; 14: 1378095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939337

RESUMEN

Background: Clear cell renal cell carcinoma (ccRCC) is a metabolic disorder characterized by abnormal lipid accumulation in the cytoplasm. Lipid metabolism-related genes may have important clinical significance for prognosis prediction and individualized treatment. Methods: We collected bulk and single-cell transcriptomic data of ccRCC and normal samples to identify key lipid metabolism-related prognostic signatures. qPCR was used to confirm the expression of signatures in cancer cell lines. Based on the identified signatures, we developed a lipid metabolism risk score (LMRS) as a risk index. We explored the potential application value of prognostic signatures and LMRS in precise treatment from multiple perspectives. Results: Through comprehensive analysis, we identified five lipid metabolism-related prognostic signatures (ACADM, ACAT1, ECHS1, HPGD, DGKZ). We developed a risk index LMRS, which was significantly associated with poor prognosis in patients. There was a significant correlation between LMRS and the infiltration levels of multiple immune cells. Patients with high LMRS may be more likely to respond to immunotherapy. The different LMRS groups were suitable for different anticancer drug treatment regimens. Conclusion: Prognostic signatures and LMRS we developed may be applied to the risk assessment of ccRCC patients, which may have potential guiding significance in the diagnosis and precise treatment of ccRCC patients.

19.
J Synchrotron Radiat ; 31(Pt 4): 791-803, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904937

RESUMEN

A novel insertion device is introduced, designated as the Mango wiggler, designed for synchrotron radiation (SR) imaging that provides a large field of view. This innovative device is constructed from two orthogonal planar wigglers with a small difference in their period lengths, eliciting the phase difference of the magnetic fields to incrementally transitions from 0 to π/2. Such a configuration enlarges the vertical divergence of the light source, as with the horizontal divergence. The appellation `Mango wiggler' derives from the distinctive mango-shaped contour of its radiation field. A comprehensive suite of theoretical analyses and simulations has been executed to elucidate the radiation properties of the Mango wiggler, employing SPECTRA and Mathematica as calculation tools. In conjunction with the ongoing construction of the High Energy Photon Source in Beijing a practical Mango wiggler device has been fabricated for utilization in SR imaging applications. Theoretical analyses were applied to this particular Mango wiggler to yield several theoretical conclusions, and several simulations were performed according to the measured magnetic field results.

20.
Plant Physiol Biochem ; 213: 108845, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885565

RESUMEN

The SWEETs (sugars will eventually be exported transporter) family comprises a class of recently identified sugar transporters that play diverse roles in regulating plant development. Beyond those fundamental functions, emerging evidence suggests that SWEETs may also be involved in plant stress responses, such as salt tolerance. However, the specific role of maize SWEETs in regulating salt tolerance remains unexplored. In this study, we demonstrate that two maize SWEET family members, ZmSWEET15a and ZmSWEET15b, are typical sugar transporters with seven transmembrane helices localized in the cell membrane. The heterologous expression of ZmSWEET15a and ZmSWEET15b in the yeast mutant strain confirms their role as sucrose transporters. Overexpression of ZmSWEET15a and ZmSWEET15b in Arabidopsis resulted in improved NaCl resistance and significant increase in seed germination rate compared to the wild type. Furthermore, by generating maize knockout mutants, we observe that the absence of ZmSWEET15a and ZmSWEET15b affects both plant growth and grain development. The salt treatment results indicate that the knockout mutants of these two genes are more sensitive to salt stress. Comparative analyses revealed that wild-type maize plants outperformed the knockout mutants in terms of growth parameters and physiological indices. Our findings unravel a novel function of ZmSWEET15a and ZmSWEET15b in the salt stress response, offering a theoretical foundation for enhancing maize salt resistance.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Tolerancia a la Sal , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA