Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cytometry A ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995093

RESUMEN

Senescence is an irreversible arrest of the cell cycle that can be characterized by markers of senescence such as p16, p21, and KI-67. The characterization of different senescence-associated phenotypes requires selection of the most relevant senescence markers to define reliable cytometric methodologies. Mass cytometry (a.k.a. Cytometry by time of flight, CyTOF) can monitor up to 40 different cell markers at the single-cell level and has the potential to integrate multiple senescence and other phenotypic markers to identify senescent cells within a complex tissue such as skeletal muscle, with greater accuracy and scalability than traditional bulk measurements and flow cytometry-based measurements. This article introduces an analysis framework for detecting putative senescent cells based on clustering, outlier detection, and Boolean logic for outliers. Results show that the pipeline can identify putative senescent cells in skeletal muscle with well-established markers such as p21 and potential markers such as GAPDH. It was also found that heterogeneity of putative senescent cells in skeletal muscle can partly be explained by their cell type. Additionally, autophagy-related proteins ATG4A, LRRK2, and GLB1 were identified as important proteins in predicting the putative senescent population, providing insights into the association between autophagy and senescence. It was observed that sex did not affect the proportion of putative senescent cells among total cells. However, age did have an effect, with a higher proportion observed in fibro/adipogenic progenitors (FAPs), satellite cells, M1 and M2 macrophages from old mice. Moreover, putative senescent cells from muscle of old and young mice show different expression levels of senescence-related proteins, with putative senescent cells of old mice having higher levels of p21 and GAPDH, whereas putative senescent cells of young mice had higher levels of IL-6. Overall, the analysis framework prioritizes multiple senescence-associated proteins to characterize putative senescent cells sourced from tissue made of different cell types.

2.
Foods ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38998563

RESUMEN

Deoxynivalenol (DON) is a global contaminant found in crop residues, grains, feed, and animal and human food. Biodegradation is currently the best solution for addressing DON pollution. However, efficient detoxification bacteria or enzymes that can be applied in complex matrices are lacking. The aim of this study was to isolate a DON-detoxifying probiotic strain with a high degradation rate, a good safety profile, and a clear genetic background. One hundred and eight bacterial strains were isolated from 300 samples collected from a school farm and surrounding livestock farms. A new DON-degrading strain, Lactobacillus rhamnosus MY-1 (L. rhamnosus MY-1), with a degradation rate of 93.34% after 48 h and a comprehensive degradation method, was identified. Then, MY-1 at a concentration of 1 × 108 CFU/mL was administered to mice in a chronic intoxication experiment for 28 days. The experimental group showed significantly higher weight gain and exhibited good production performance compared to the control group. The length of the ileal villi in the experimental group was significantly longer than that in the control group. The expression of pro-inflammatory cytokines decreased, while the expression of anti-inflammatory factors increased in the experimental group. Whole-genome analysis revealed that most of the MY-1 genes were involved in carbohydrate metabolism and membrane transport, with a cluster of secondary metabolite genes encoding antimicrobial properties. In summary, this study successfully identified a Lactobacillus strain with good safety performance, high DON degradation efficiency, and a clear genetic background, providing a new approach for the treatment of DON contamination.

3.
Nat Astron ; 8(6): 774-785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912294

RESUMEN

Identifying the sites of r-process nucleosynthesis, a primary mechanism of heavy element production, is a key goal of astrophysics. The discovery of the brightest gamma-ray burst (GRB) to date, GRB 221009A, presented an opportunity to spectroscopically test the idea that r-process elements are produced following the collapse of rapidly rotating massive stars. Here we present James Webb Space Telescope observations of GRB 221009A obtained +168 and +170 rest-frame days after the gamma-ray trigger, and demonstrate that they are well described by a SN 1998bw-like supernova (SN) and power-law afterglow, with no evidence for a component from r-process emission. The SN, with a nickel mass of approximately 0.09 M ⊙, is only slightly fainter than the brightness of SN 1998bw at this phase, which indicates that the SN is not an unusual GRB-SN. This demonstrates that the GRB and SN mechanisms are decoupled and that highly energetic GRBs are not likely to produce significant quantities of r-process material, which leaves open the question of whether explosions of massive stars are key sources of r-process elements. Moreover, the host galaxy of GRB 221009A has a very low metallicity of approximately 0.12 Z ⊙ and strong H2 emission at the explosion site, which is consistent with recent star formation, hinting that environmental factors are responsible for its extreme energetics.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38837359

RESUMEN

BACKGROUND: Emotion regulation (ER) is considered central in adolescent psychopathology, and ER strategies may change during challenging times, such as a global pandemic. Despite this, there remains a limited understanding of individual differences in ER mechanisms and their associations with psychopathology. This study examined whether and how cognitive reappraisal, expressive suppression, and self-compassion changed over COVID-19 and how these changes uniquely predicted adolescents' depressive symptoms. METHODS: A total of 2,411 adolescents (58.6% females; Mage = 18.51, SD = 0.80) completed the Emotional Regulation Questionnaire, the Self-compassion Scale, and the Symptom Checklist-90 before COVID-19 (in 2019) and during COVID-19 (in 2020). The predictive associations between each ER strategy and depressive symptoms were tested with latent change score models. RESULTS: Adolescents' use of expressive suppression and self-compassion strategies both increased during COVID-19. More increases in expressive suppression predicted more depressive symptoms, whereas more increases in self-compassion predicted fewer depressive symptoms. Although, on average, cognitive reappraisal did not change, it did show significant variations within the sample - increases (vs. decreases) in cognitive appraisal predicted fewer depressive symptoms. CONCLUSIONS: The study indicates how adolescents' ER strategies changed during the unprecedented global pandemic. It underscores protective roles of increased cognitive reappraisal and self-compassion, as well as the adverse consequence of heightened expressive suppression on adolescents' depressive symptoms. Findings offer insights for targeted interventions aimed at addressing specific ER strategies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38876905

RESUMEN

Highly effective antiretroviral therapy (ART) has transformed human immunodeficiency virus (HIV) care in the past 3 decades. 30 years ago, how many would have imagined that a single-tablet daily ART regimen containing different drug classes could achieve sustained HIV-1 suppression and halt disease progression to acquired immunodeficiency syndrome (AIDS)? Despite this remarkable achievement, challenges in HIV care remain that require further innovation for ART. In this review, we focus on newly approved antiretroviral agents and those undergoing phase 2/3 clinical trials. These new antiretrovirals hold great promise to expand treatment options and fill gaps in HIV care.

6.
Clin Case Rep ; 12(5): e8837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779509

RESUMEN

Key Clinical Message: Chyle leakage is a rare postoperative complication of breast cancer, and conservative treatments should be prioritized, with careful monitoring of drainage volume and timely surgical intervention when conservative treatments are ineffective. Abstract: Chyle leaks following surgery for breast cancer are seldom encountered. Management varies with no consensus in the literature. This paper reports a case of a chylous leak after axillary dissection in a patient with breast cancer eventually cured with conservative treatment and discusses management options varied with both conservative and surgical options available to clinicians.

7.
J Glob Antimicrob Resist ; 37: 199-207, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641225

RESUMEN

OBJECTIVES: The blaNDM gene was prevalent among children and became the predominant cause of severe infection in infants and children. This study aimed to investigate the epidemiology and molecular characteristics of blaNDM in Enterobacteriaceae among children in China. METHODS: Carbapenem-resistant Enterobacteriaceae (CRE) were collected in the Children's Hospital of Fudan University from January 2016 to December 2022. Five carbapenemase genes (blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48) were screened by PCR method. Multilocus sequence typing (MLST) was conducted for phylogenetic analyses. blaNDM-carrying plasmids were typed by PCR-based Incompatibility (Inc) typing method. Moreover, plasmid comparison was performed with 213 publicly available IncX3 plasmids. RESULTS: A total of 330 CRE strains were enrolled, 96.4% of which carried carbapenemase genes. blaNDM gene accounted for 64.8% (214 strains) and included four variants, including blaNDM-1 (59.8%), blaNDM-5 (39.3%), blaNDM-7 (0.5%), and blaNDM-9 (0.5%). There were no predominant MLST lineages of blaNDM carrying strains. IncX3 was the major plasmid carrying blaNDM-1 (68.0%) and blaNDM-5 (72.6%) and was dominant in blaNDM-Klebsiella penumoniae (79.8%), blaNDM-Escherichia coli (58.2%), and blaNDM-Enterobacter cloacae (61.0%), respectively. Most (79.0%) clinical IncX3 plasmids in the world carried blaNDM, and the prevalence of blaNDM in IncX3 plasmids was more common in China (95.8%) than other countries (58.1%, P <0.01). CONCLUSION: blaNDM is highly prevalent in CRE among children in China. The spread of blaNDM was mainly mediated by IncX3 plasmids. Surveillance and infection control on the spread of blaNDM among children are important.


Asunto(s)
Proteínas Bacterianas , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Tipificación de Secuencias Multilocus , Plásmidos , beta-Lactamasas , Humanos , China/epidemiología , Plásmidos/genética , beta-Lactamasas/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Niño , Lactante , Preescolar , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , Femenino , Antibacterianos/farmacología , Filogenia , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Masculino
8.
Nature ; 630(8015): 54-58, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648852

RESUMEN

Large-scale outflows driven by supermassive black holes are thought to have a fundamental role in suppressing star formation in massive galaxies. However, direct observational evidence for this hypothesis is still lacking, particularly in the young universe where star-formation quenching is remarkably rapid1-3, thus requiring effective removal of gas4 as opposed to slow gas heating5,6. Although outflows of ionized gas are frequently detected in massive distant galaxies7, the amount of ejected mass is too small to be able to suppress star formation8,9. Gas ejection is expected to be more efficient in the neutral and molecular phases10, but at high redshift these have only been observed in starbursts and quasars11,12. Here we report JWST spectroscopy of a massive galaxy experiencing rapid quenching at a redshift of 2.445. We detect a weak outflow of ionized gas and a powerful outflow of neutral gas, with a mass outflow rate that is sufficient to quench the star formation. Neither X-ray nor radio activity is detected; however, the presence of a supermassive black hole is suggested by the properties of the ionized gas emission lines. We thus conclude that supermassive black holes are able to rapidly suppress star formation in massive galaxies by efficiently ejecting neutral gas.

9.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580335

RESUMEN

BACKGROUND: Ovarian cancer is the most lethal gynecological malignancy, with limited treatment options after failure of standard therapies. Despite the potential of poly(ADP-ribose) polymerase inhibitors in treating DNA damage response (DDR)-deficient ovarian cancer, the development of resistance and immunosuppression limit their efficacy, necessitating alternative therapeutic strategies. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) represent a novel class of inhibitors that are currently being assessed in preclinical and clinical studies for cancer treatment. METHODS: By using a PARG small-molecule inhibitor, COH34, and a cell-penetrating antibody targeting the PARG's catalytic domain, we investigated the effects of PARG inhibition on signal transducer and activator of transcription 3 (STAT3) in OVCAR8, PEO1, and Brca1-null ID8 ovarian cancer cell lines, as well as in immune cells. We examined PARG inhibition-induced effects on STAT3 phosphorylation, nuclear localization, target gene expression, and antitumor immune responses in vitro, in patient-derived tumor organoids, and in an immunocompetent Brca1-null ID8 ovarian mouse tumor model that mirrors DDR-deficient human high-grade serous ovarian cancer. We also tested the effects of overexpressing a constitutively activated STAT3 mutant on COH34-induced tumor cell growth inhibition. RESULTS: Our findings show that PARG inhibition downregulates STAT3 activity through dephosphorylation in ovarian cancer cells. Importantly, overexpression of a constitutively activated STAT3 mutant in tumor cells attenuates PARG inhibitor-induced growth inhibition. Additionally, PARG inhibition reduces STAT3 phosphorylation in immune cells, leading to the activation of antitumor immune responses, shown in immune cells cocultured with ovarian cancer patient tumor-derived organoids and in immune-competent mice-bearing mouse ovarian tumors. CONCLUSIONS: We have identified a novel antitumor mechanism underlying PARG inhibition beyond its primary antitumor effects through blocking DDR in ovarian cancer. Furthermore, targeting PARG activates antitumor immune responses, thereby potentially increasing response rates to immunotherapy in patients with ovarian cancer.


Asunto(s)
Glicósido Hidrolasas , Neoplasias Ováricas , Factor de Transcripción STAT3 , Animales , Femenino , Humanos , Ratones , Línea Celular , Inmunidad , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Factor de Transcripción STAT3/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo
10.
Opt Express ; 32(7): 11202-11220, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570974

RESUMEN

On-chip microring resonators (MRRs) have been proposed to construct time-delayed reservoir computing (RC) systems, which offer promising configurations available for computation with high scalability, high-density computing, and easy fabrication. A single MRR, however, is inadequate to provide enough memory for the computation task with diverse memory requirements. Large memory requirements are satisfied by the RC system based on the MRR with optical feedback, but at the expense of its ultralong feedback waveguide. In this paper, a time-delayed RC is proposed by utilizing a silicon-based nonlinear MRR in conjunction with an array of linear MRRs. These linear MRRs possess a high quality factor, providing enough memory capacity for the RC system. We quantitatively analyze and assess the proposed RC structure's performance on three classical tasks with diverse memory requirements, i.e., the Narma 10, Mackey-Glass, and Santa Fe chaotic timeseries prediction tasks. The proposed system exhibits comparable performance to the system based on the MRR with optical feedback, when it comes to handling the Narma 10 task, which requires a significant memory capacity. Nevertheless, the dimension of the former is at least 350 times smaller than the latter. The proposed system lays a good foundation for the scalability and seamless integration of photonic RC.

11.
Adv Sci (Weinh) ; 11(22): e2309770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38528670

RESUMEN

Messenger RNA (mRNA) cancer vaccines are a new class of immunotherapies that can activate the immune system to recognize and destroy cancer cells. However, their effectiveness in treating colorectal cancer located on the mucosal surface of the gut is limited due to the insufficient activation of mucosal immune response and inadequate infiltration of cytotoxic T cells into tumors. To address this issue, a new mRNA cancer vaccine is developed that can stimulate mucosal immune responses in the gut by co-delivering all-trans-retinoic acid (ATRA) and mRNA using lipid nanoparticle (LNP). The incorporation of ATRA has not only improved the mRNA transfection efficiency of LNP but also induced high expression of gut-homing receptors on vaccine-activated T cells. Additionally, the use of LNP improves the aqueous solubility of ATRA, eliminating the need for toxic solvents to administer ATRA. Upon intramuscular injections, ATRA-adjuvanted mRNA-LNP significantly increase the infiltration of antigen-specific, cytotoxic T cells in the lamina propria of the intestine, mesenteric lymph nodes, and orthotopic colorectal tumors, resulting in significantly improved tumor inhibition and prolonged animal survival compared to conventional mRNA-LNP without ATRA. Overall, this study provides a promising approach for improving the therapeutic efficacy of mRNA cancer vaccines against colorectal cancer.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Colorrectales , Tretinoina , Tretinoina/farmacología , Tretinoina/administración & dosificación , Animales , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Ratones , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Modelos Animales de Enfermedad , Nanopartículas , ARN Mensajero/genética , ARN Mensajero/inmunología , Femenino , Humanos , Ratones Endogámicos BALB C , Vacunas de ARNm , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación
12.
J Infect Dis ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462671

RESUMEN

BACKGROUND: The association between low-frequency HIV-1 drug resistance mutations (DRMs) and treatment failure (TF) is controversial. We explore this association using NGS methods that accurately sample low-frequency DRMs. METHODS: We enrolled women with HIV-1 in Malawi who were either ART naïve (A), had ART failure (B), or had discontinued ART (C). At entry, A and C began an NNRTI-based regimen and B started a PI-based regimen. We used Primer ID MiSeq to identify regimen-relevant DRMs in entry and TF plasma samples, and a Cox proportional hazards model to calculate hazard ratios (HRs) for entry DRMs. Low-frequency DRMs were defined as ≤ 20%. RESULTS: We sequenced 360 participants. Cohort B and C participants were more likely to have TF than Cohort A participants. The presence of K103N at entry significantly increased TF risk among A and C participants at both high and low frequency, with HR of 3.12 [1.58-6.18, 95% CI] and 2.38 [1.00-5.67, 95% CI] respectively. At TF, 45% of participants showed selection of DRMs while in the remaining participants there was an apparent lack of selective pressure from ART. CONCLUSIONS: Using accurate NGS for DRM detection may benefit an additional 10% of the patients by identifying low-frequency K103N mutations.

13.
ArXiv ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38410646

RESUMEN

Recent studies indicate that Generative Pre-trained Transformer 4 with Vision (GPT-4V) outperforms human physicians in medical challenge tasks. However, these evaluations primarily focused on the accuracy of multi-choice questions alone. Our study extends the current scope by conducting a comprehensive analysis of GPT-4V's rationales of image comprehension, recall of medical knowledge, and step-by-step multimodal reasoning when solving New England Journal of Medicine (NEJM) Image Challenges - an imaging quiz designed to test the knowledge and diagnostic capabilities of medical professionals. Evaluation results confirmed that GPT-4V performs comparatively to human physicians regarding multi-choice accuracy (81.6% vs. 77.8%). GPT-4V also performs well in cases where physicians incorrectly answer, with over 78% accuracy. However, we discovered that GPT-4V frequently presents flawed rationales in cases where it makes the correct final choices (35.5%), most prominent in image comprehension (27.2%). Regardless of GPT-4V's high accuracy in multi-choice questions, our findings emphasize the necessity for further in-depth evaluations of its rationales before integrating such multimodal AI models into clinical workflows.

14.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329130

RESUMEN

BACKGROUNDIdentifying factors that predict the timing of HIV rebound after treatment interruption will be crucial for designing and evaluating interventions for HIV remission.METHODSWe performed a broad evaluation of viral and immune factors that predict viral rebound (AIDS Clinical Trials Group A5345). Participants initiated antiretroviral therapy (ART) during chronic (N = 33) or early (N = 12) HIV infection with ≥ 2 years of suppressive ART and restarted ART if they had 2 viral loads ≥ 1,000 copies/mL after treatment interruption.RESULTSCompared with chronic-treated participants, early-treated individuals had smaller and fewer transcriptionally active HIV reservoirs. A higher percentage of HIV Gag-specific CD8+ T cell cytotoxic response was associated with lower intact proviral DNA. Predictors of HIV rebound timing differed between early- versus chronic-treated participants, as the strongest reservoir predictor of time to HIV rebound was level of residual viremia in early-treated participants and intact DNA level in chronic-treated individuals. We also identified distinct sets of pre-treatment interruption viral, immune, and inflammatory markers that differentiated participants who had rapid versus slow rebound.CONCLUSIONThe results provide an in-depth overview of the complex interplay of viral, immunologic, and inflammatory predictors of viral rebound and demonstrate that the timing of ART initiation modifies the features of rapid and slow viral rebound.TRIAL REGISTRATIONClinicalTrials.gov NCT03001128FUNDINGNIH National Institute of Allergy and Infectious Diseases, Merck.


Asunto(s)
Infecciones por VIH , Humanos , Provirus/genética , Linfocitos T CD8-positivos , Carga Viral , ADN
15.
Foods ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397507

RESUMEN

Zearalenone (ZEN) is considered one of the most serious mycotoxins contaminating grains and their by-products, causing significant economic losses in the feed and food industries. Biodegradation pathways are currently considered the most efficient solution to remove ZEN contamination from foods. However, low degradation rates and vulnerability to environmental impacts limit the application of biodegradation pathways. Therefore, the main research objective of this article was to screen strains that can efficiently degrade ZEN and survive under harsh conditions. This study successfully isolated a new strain L9 which can efficiently degrade ZEN from 108 food ingredients. The results of sequence alignment showed that L9 is Bacillus velezensis. Meanwhile, we found that the L9 degradation rate reached 91.14% at 24 h and confirmed that the primary degradation mechanism of this strain is biodegradation. The strain exhibits resistance to high temperature, acid, and 0.3% bile salts. The results of whole-genome sequencing analysis showed that, it is possible that the strain encodes the key enzyme, such as chitinase, carboxylesterases, and lactone hydrolase, that work together to degrade ZEN. In addition, 227 unique genes in this strain are primarily involved in its replication, recombination, repair, and protective mechanisms. In summary, we successfully excavated a ZEN-degrading, genetically distinct strain of Bacillus velezensis that provides a solid foundation for the detoxification of feed and food contamination in the natural environment.

16.
Heliyon ; 10(2): e24373, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312631

RESUMEN

A Chinese male patient with advanced lung adenocarcinoma experienced disease progression one and a half years after receiving first-line immunochemotherapy. The second biopsy was performed and tissue immunohistochemistry revealed Anaplastic lymphoma kinase (ALK) expression in the cytoplasm of tumor cells, so he began to receive Alectinib treatment. Then the next generation sequencing found double fusion variants of S1 RNA binding domain 1 (SRBD1)- ALK and ALK- Calcium voltage-gated channel subunit alpha1 D (CACNA1D). After continuous Alectinib treatment for 7 months, almost complete response (CR) was achieved. The patient is currently taking Alectinib for 13 months, the condition is stable, and is waiting for the next cycle of efficacy evaluation.

17.
Sci Transl Med ; 16(731): eadk1599, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38266109

RESUMEN

Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the immune defects that predispose an individual to persistent coronavirus disease 2019 (COVID-19) remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median times to nasal viral RNA and culture clearance in individuals with severe immunosuppression due to hematologic malignancy or transplant (S-HT) were 72 and 40 days, respectively, both of which were significantly longer than clearance rates in individuals with severe immunosuppression due to autoimmunity or B cell deficiency (S-A), individuals with nonsevere immunodeficiency, and nonimmunocompromised groups (P < 0.01). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing resistance against therapeutic monoclonal antibodies. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral responses, whereas only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across distinct immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Prospectivos , Cinética , Terapia de Inmunosupresión
18.
Clin Infect Dis ; 78(4): 908-917, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949817

RESUMEN

The goals of coronavirus disease 2019 (COVID-19) antiviral therapy early in the pandemic were to prevent severe disease, hospitalization, and death. As these outcomes have become infrequent in the age of widespread population immunity, the objectives have shifted. For the general population, COVID-19-directed antiviral therapy should decrease symptom severity and duration and minimize infectiousness, and for immunocompromised individuals, antiviral therapy should reduce severe outcomes and persistent infection. The increased recognition of virologic rebound following ritonavir-boosted nirmatrelvir (NMV/r) and the lack of randomized controlled trial data showing benefit of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for standard-risk, vaccinated individuals remain major knowledge gaps. Here, we review data for selected antiviral agents and immunomodulators currently available or in late-stage clinical trials for use in outpatients. We do not review antibody products, convalescent plasma, systemic corticosteroids, IL-6 inhibitors, Janus kinase inhibitors, or agents that lack Food and Drug Administration approval or emergency use authorization or are not appropriate for outpatients.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Inmunidad Colectiva , Sueroterapia para COVID-19 , Antivirales/uso terapéutico , Ritonavir/uso terapéutico
19.
Adv Mater ; 36(8): e2307918, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37852010

RESUMEN

Triboelectric nanogenerator (TENG) is becoming a sustainable and renewable way of energy harvesting and self-powered sensing because of low cost, simple structure, and high efficiency. However, the output current of existing TENGs is still low. It is proposed that the output current of TENGs can be dramatically improved if the triboelectric charges can distribute inside the triboelectric layers. Herein, a novel single-electrode conductive network-based TENG (CN-TENG) is developed by introducing a conductive network of multiwalled carbon nanotubes in dielectric triboelectric layer of thermoplastic polyurethane (TPU). In this CN-TENG, the contact electrification-induced charges distribute on both the surface and interior of the dielectric TPU layer. Thus, the short-circuit current of CN-TENG improves for 100-fold, compared with that of traditional dielectric TENG. In addition, this CN-TENG, even without packing, can work stably in high-humidity environments and even in the rain, which is another main challenge for conventional TENGs due to charge leakage. Further, this CN-TENG is applied for the first time, to successfully distinguish conductive and dielectric materials. This work provides a new and effective strategy to fabricate TENGs with high output current and humidity-resistivity, greatly expanding their practical applications in energy harvesting, movement sensing, human-machine interaction, and so on.

20.
J Infect Dis ; 229(4): 1147-1157, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38035792

RESUMEN

BACKGROUND: Immune dysregulation in people with human immunodeficiency virus-1 (PWH) persists despite potent antiretroviral therapy and, consequently, PWH tend to have lower immune responses to licensed vaccines. However, limited information is available about the impact of mRNA vaccines in PWH. This study details the immunologic responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in PWH and their impact on HIV-1. METHODS: We quantified anti-S immunoglobulin G (IgG) binding and neutralization of 3 SARS-CoV-2 variants of concern and complement activation in blood from virally suppressed men with HIV-1 (MWH) and men without HIV-1 (MWOH), and the characteristics that may impact the vaccine immune responses. We also studied antibody levels against HIV-1 proteins and HIV-1 plasma RNA. RESULTS: MWH had lower anti-S IgG binding and neutralizing antibodies against the 3 variants compared to MWOH. MWH also produced anti-S1 antibodies with a 10-fold greater ability to activate complement and exhibited higher C3a blood levels than MWOH. MWH had decreased residual HIV-1 plasma viremia and anti-Nef IgG approximately 100 days after immunization. CONCLUSIONS: MWH respond to SARS-CoV-2 mRNA vaccines with lower antibody titers and with greater activation of complement, while exhibiting a decrease in HIV-1 viremia and anti-Nef antibodies. These results suggest an important role of complement activation mediating protection in MWH.


Asunto(s)
COVID-19 , Seropositividad para VIH , VIH-1 , Masculino , Humanos , Vacunas contra la COVID-19 , Viremia , SARS-CoV-2 , Vacunas de ARNm , COVID-19/prevención & control , Activación de Complemento , Anticuerpos Neutralizantes , Inmunoglobulina G , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA