RESUMEN
BACKGROUND: Early detection of bladder cancer (BCa) can have a positive impact on patients' prognosis. However, there is currently no widely accepted method for early screening of BCa. We aimed to develop an efficient, clinically applicable, and noninvasive method for the early screening of BCa by detecting specific serum miRNA levels. METHODS: A mixed-cohort (including BCa, 12 different other cancers, benign disease patients, and health population) study was conducted using a sample size of 16,189. Five machine learning algorithms were utilized to develop screening models for BCa using the training dataset. The performance of the model was evaluated using receiver operating characteristic curve and decision curve analysis on the testing dataset, and subsequently, the model with the best predictive power was selected. Furthermore, the selected model's screening performance was evaluated using both the validation set and external set. RESULTS: The BCaS3miR model, utilizing only three serum miRNAs (miR-6087, miR-1343-3p, and miR-5100) and based on the KNN algorithm, is the superior screening model chosen for BCa. BCaS3miR consistently performed well in both the testing, validation, and external sets, exceeding 90% sensitivity and specificity levels. The area under the curve was 0.990 (95% CI: 0.984-0.991), 0.964 (95% CI: 0.936-0.984), and 0.917 (95% CI: 0.836-0.953) in the testing, validation, and external set. The subgroup analysis revealed that the BCaS3miR model demonstrated outstanding screening accuracy in various clinical subgroups of BCa. In addition, we developed a BCa screening scoring model (BCaSS) based on the levels of miR-1343-3p/miR-6087 and miR-5100/miR-6087. The screening effect of BCaSS is investigated and the findings indicate that it has predictability and distinct advantages. CONCLUSIONS: Using a mixed cohort with the largest known sample size to date, we have developed effective screening models for BCa, namely BCaS3miR and BCaSS. The models demonstrated remarkable screening accuracy, indicating potential for the early detection of BCa.
Asunto(s)
Biomarcadores de Tumor , Detección Precoz del Cáncer , Aprendizaje Automático , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/sangre , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/diagnóstico , Detección Precoz del Cáncer/métodos , MicroARNs/sangre , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Anciano , Curva ROC , Estudios de Cohortes , AdultoRESUMEN
BACKGROUND: Myocardial infarction (MI), representing the most severe manifestation of coronary artery disease (CAD), stands as a primary concern in the prevention and management of cardiovascular diseases. Clinical evidence demonstrates that Qingxin Jieyu Granule (QXJYG) is efficacious in treatment of MI patients. However, the mechanisms underlying its therapeutic effects remain to be elucidated. PURPOSE: This study aimed to evaluate the effects of QXJYG on MI and investigate its underlying mechanisms. MATERIALS AND METHODS: The MI model in rats was developed through ligating the left anterior descending (LAD) artery. The effect of QXJYG on cardiac function impairment in MI rats was assessed by echocardiography, while the improvement of cardiomyocyte morphology and myocardial fibrosis after treatment with QXJYG was evaluated through hematoxylin-eosin (H&E) staining and Masson staining. The chemical constituents of QXJYG in blood were identified by using the UPLC-Q-TOF/MS technique. Furthermore, the molecular mechanism underlying the QXJYG therapeutic effect in MI was postulated based on the disease gene-drug target network analysis. Other technical methods such as ELISA, immunohistochemical staining, Western Blot analysis and application of pharmacological inhibitors were employed to verify the effectiveness of QXJYG in treating MI and explore its potential molecular targets. RESULTS: The cardiac function in experimental rats post-MI was significantly impaired, as evidenced by an enlarged infarction area, disordered arrangement of cardiomyocytes, and aggravated myocardial fibrosis. QXJYG treatment significantly enhanced the cardiac function and reduced the pathological damage of the cardiac tissue in MI rats. Through the network pharmacology analysis, we identified that FPR2 might be a potential target of QXJYG in its cardiac protection role. QXJYG markedly downregulated the level of neutrophil extracellular traps (NETs) in MI rats, specifically manifested as a significant reduction in the Histone-DNA level and expression of myeloperoxidase (MPO) and citrullinated histone H3 (CitH3) proteins. Furthermore, QXJYG upregulated the levels of ANXA1 and FPR2 proteins in MI rats. The level of FPR2 was markedly reduced in MI rats upon administration of WRW4, a specific inhibitor of FPR2, which was associated with exacerbated MI injury and an elevated level of NETs. When WRW4 was co-administered with QXJYG, the cardioprotective effects of QXJYG on MI were significantly diminished. However, the addition of DNase I did not result in significant changes of the outcomes in MI rats after QXJYG intervention. CONCLUSION: QXJYG treatment alleviates cardiac tissue injury in MI rats by inhibiting NETs through activating the ANXA1/FPR2 axis. The findings extend our understanding of the therapeutic effectiveness of QXJYG and offer a scientific foundation for the clinical utilization of QXJYG.
RESUMEN
Cities, as complex systems with multi-interconnected subsystems, face significant challenges from both rapid urbanization and climate change. Ensuring high resilience in urban areas is essential for managing these dynamic risks effectively. This study introduces an innovative, data-driven approach to quantitatively analyze the spatial-temporal evolution patterns of urban resilience, validated through a case study of Chongqing, a representative mountainous city in China. Based on historical landslide data from Chongqing (2010-2020), which includes 4464 events, along with indicator data from the Chongqing Statistical Yearbook, we developed a comprehensive assessment framework. This framework incorporates 33 variables, covering indicators of physical-environmental resilience (PER) and socio-economic resilience (SER). The model integrates the Random Forest (RF) algorithm, Analytic Hierarchy Process (AHP), and Coupling Coordination Degree (CCD) model. Key findings include: (1) Social development in mountainous cities like Chongqing follows a point-to-area pattern. Although there is an overall increase in SER, the CCD in more developed areas (Chongqing urban circle) was generally higher than in less developed areas (northeastern and southeastern Chongqing) (2) The PER model demonstrated exceptional performance (AUC values consistently above 0.95). Spatiotemporal evolution models reveal that Chongqing maintains a high overall PER. Notably, from 2019 to 2020, the proportion of administrative units classified as highly resilient peaked at 24.5%, marking a historical high. (3) Multi-year average rainfall primarily impacts PER (ranked first), while Gross Domestic Product (GDP) significantly affect SER. The development of multi-dimensional recovery indicators provides a robust framework for assessing resilience against landslides in mountainous cities. The CCD model illustrates the importance of regional dynamic coordinated development in resilience trajectories. This study provides a detailed blueprint for the scientific development of resilient mountainous cities, emphasizing the need for a spatial-temporal perspective on resilience and the benefits of coordinated regional development.
RESUMEN
BACKGROUND: The syncytiotrophoblast (SCT) layer in the placenta serves as a crucial physical barrier separating maternal-fetal circulation, facilitating essential signal and substance exchange between the mother and fetus. Any abnormalities in its formation or function can result in various maternal syndromes, such as preeclampsia. The transition of proliferative villous cytotrophoblasts (VCT) from the mitotic cell cycle to the G0 phase is a prerequisite for VCT differentiation and their fusion into SCT. The imprinting gene P57Kip2, specifically expressed in intermediate VCT capable of fusion, plays a pivotal role in driving this key event. Moreover, aberrant expression of P57Kip2 has been linked to pathological placental conditions and adverse fetal outcomes. METHODS: Validation of STK40 interaction with P57Kip2 using rigid molecular simulation docking and co-immunoprecipitation. STK40 expression was modulated by lentivirus in BeWo cells, and the effect of STK40 on trophoblast fusion was assessed by real-time quantitative PCR, western blot, immunofluorescence, and cell viability and proliferation assays. Co-immunoprecipitation, transcriptome sequencing, and western blot were used to determine the potential mechanisms by which STK40 regulates P57Kip2. RESULTS: In this study, STK40 has been identified as a novel interacting protein with P57Kip2, and its expression is down-regulated during the fusion process of trophoblast cells. Overexpressing STK40 inhibited cell fusion in BeWo cells while stimulating mitotic cell cycle activity. Further experiments indicated that this effect is attributed to its specific binding to the CDK-binding and the Cyclin-binding domains of P57Kip2, mediating the E3 ubiquitin ligase COP1-mediated ubiquitination and degradation of P57Kip2. Moreover, abnormally high expression of STK40 might significantly contribute to the occurrence of preeclampsia. CONCLUSIONS: This study offers new insights into the role of STK40 in regulating the protein-level homeostasis of P57Kip2 during placental development.
Asunto(s)
Fusión Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina , Proteínas Serina-Treonina Quinasas , Trofoblastos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Femenino , Humanos , Embarazo , Proliferación Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , Trofoblastos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Urea electrosynthesis from coelectrolysis of NO3- and CO2 (UENC) holds a significant prospect to achieve efficient and sustainable urea production. Herein, atomically dispersed Cu on In2O3 (Cu1/In2O3) is designed as an effective and robust catalyst for the UENC. Combined theoretical calculations and in situ spectroscopic analysis reveal the synergistic effect of the Cu1-O2-In site and the In site to boost the UENC energetics via a relay catalysis pathway, where the Cu1-O2-In site drives *NO3 â *NH2 and the In site catalyzes *CO2 â *CO. The generated *CO is then migrated from the In site to the Cu1-O2-In site, followed by C-N coupling with *NH2 on the Cu1-O2-In site to generate urea. Consequently, Cu1/In2O3 assembled within a flow cell exhibits an impressive urea yield rate of 28.97 mmol h-1 g-1 with a urea-Faradaic efficiency (FEurea) of 50.88%.
RESUMEN
Traditional optical anti-counterfeiting (AC) is achieved by static printed images, which makes them susceptible to lower levels of security and easier replication. Therefore, it is essential to develop AC device with dynamic modulation for higher security. Electrophoretic display (EPD) has the advantages of low power consumption, high ambient contrast ratio, and capability of showing dynamic images which is suitable for dynamic AC applications. Herein, we prepared a dynamical AC device based on a fluorescent EPD, and achieving the image switch between black, white, and green fluorescence states under the dual-mode driving (electronic field and UV light). We loaded perovskite quantum dots (CsPbBr3) onto the TiO2 particles and further prepared fluorescent electrophoretic particles TiO2/CsPbBr3-3-PLMA (TiO/CPB-3) by grafting and polymerizing method. In addition, we fabricated the AC devices based on the fluorescent EPD, which exhibits the multifunctional AC, where the fluorescent EPD has a fast response time of 350 ms, a high contrast ratio of 17, and bright green fluorescence. This prototype demonstrates a new way for future dynamic AC and identification.
RESUMEN
OBJECTIVE: To evaluate the efficacy of a novel temperature control flexible ureteroscope system in the precise monitoring and control of intrarenal temperature (IRT) during ureteroscopy. METHODS: We developed a novel temperature control flexible ureteroscope system (PT-Scope), including a temperature-monitoring ureteroscope and a irrigation-suction platform for temperature regulation. A porcine thermometry model was established to observe temperature changes under varying holmium laser powers (10, 20, 30 W) and irrigation rates (0, 20, 50 mL/min), utilizing percutaneous nephrostomy thermometry and PT-Scope measurements, with subsequent evaluation of temperature variations at different distances from the laser fiber tip. A porcine kidney stone model was established while porcine was randomly assigned to two groups: In the temperature control group, PT-Scope was connected to the irrigation-suction platform with temperature regulation, while in the nontemperature control group without temperature regulation. Comparative analysis was performed to evaluate differences in IRT between the two groups. RESULTS: Across various laser powers and irrigation rates, the temperature measurement capability of the PT-Scope was precise, demonstrating consistency with percutaneous nephrostomy temperature measurements. The temperature obtained from the PT-Scope reflect the temperature approximately 0.05 cm away from the fiber tip, whereas temperatures close to fiber tip were significantly higher. The peak temperature of the temperature control group vs nontemperature control group were 31.70 ± 2.609°C and 44.37 ± 3.318 °C, respectively (P < 0.01). The mean temperature of the temperature control group vs nontemperature control group was 27.40 ± 2.107 °C vs 35.9 ± 1.921 °C (P < 0.01). CONCLUSION: PT-Scope has demonstrated the capability to precisely monitor and control IRT within a safe threshold.
Asunto(s)
Ureteroscopios , Ureteroscopía , Animales , Ureteroscopía/instrumentación , Ureteroscopía/métodos , Porcinos , Diseño de Equipo , Riñón , Temperatura Corporal , Cálculos Renales/cirugía , Temperatura , Termometría/instrumentación , Termometría/métodos , Láseres de Estado Sólido/uso terapéuticoRESUMEN
Synthetic electronic health record (EHR) data generation has been increasingly recognized as an important solution to expand the accessibility and maximize the value of private health data on a large scale. Recent advances in machine learning have facilitated more accurate modeling for complex and high-dimensional data, thereby greatly enhancing the data quality of synthetic EHR data. Among various approaches, generative adversarial networks (GANs) have become the main technical path in the literature due to their ability to capture the statistical characteristics of real data. However, there is a scarcity of detailed guidance within the domain regarding the development procedures of synthetic EHR data. The objective of this tutorial is to present a transparent and reproducible process for generating structured synthetic EHR data using a publicly accessible EHR data set as an example. We cover the topics of GAN architecture, EHR data types and representation, data preprocessing, GAN training, synthetic data generation and postprocessing, and data quality evaluation. We conclude this tutorial by discussing multiple important issues and future opportunities in this domain. The source code of the entire process has been made publicly available.
RESUMEN
The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Preeclampsia , Trofoblastos , Trofoblastos/metabolismo , Femenino , Preeclampsia/genética , Preeclampsia/metabolismo , Preeclampsia/patología , Embarazo , Humanos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Fusión Celular , Placenta/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genéticaRESUMEN
Electrophoretic displays (EPDs) utilize the electrophoretic particles in electronic ink (e-ink) to display different color states with bistability. Bistability of EPDs is achieved by placing colloidal particles in a highly viscous solvent to keep the distribution of colloidal particles stable without sustaining the external field, so it only consumes power when updating the image. The feature of low power consumption makes it suitable for applications such as advertising boards, price tags, etc. Apart from these applications, recent research on lateral-driving EPDs extends its applications to smart windows, privacy control, and so on. However, achieving bistability by simply increasing the viscosity of solvent is inefficient in the case of lateral driving operation. Therefore, it is deserving to have intensive study on the mechanism of bistability from other aspects. Herein, we propose a mechanism to investigate the charge adsorption behavior on the electrode to affect the bistability of particles, which is based on the "Stern layer adsorption/desorption" model. Based on the above mechanism, we further fabricated a hexadecyl trimethylammonium bromide (CTAB)/poly(vinyl alcohol) (PVA) composite film on the electrode to improve the bistability of lateral-driving EPD by reducing the diffusion current caused by unabsorbed charges. This developed lateral-driving EPD can significantly improve the bistability, which is enhanced from 40 s to 7 min, an increase by a factor of approximately 10. This work gives a way to consider the bistability of colloidal particles in nonpolar solvent.
RESUMEN
In recent decades, natural products have attracted worldwide attention and become one of the most important resources for pharmacological industries and medical sciences to identify novel drug candidates for disease treatment. Tetramethylpyrazine (TMP) is an alkaloid extracted from Ligusticum chuanxiong Hort., which has shown great therapeutic potential in cardiovascular and cerebrovascular diseases, liver and renal injury, as well as cancer. In this review, we analyzed 1270 papers published on the Web of Science Core Collection from 2002 to 2022 and found that TMP exerted significant protective effects on ischemia-reperfusion (I/R) injury that is the cause of pathological damages in a variety of conditions, such as ischemic stroke, myocardial infarction, acute kidney injury, and liver transplantation. TMP is limited in clinical applications to some extent due to its rapid metabolism, a short biological half-life and poor bioavailability. Obviously, the structural modification, administration methods and dosage forms of TMP need to be further investigated in order to improve its bioavailability. This review summarizes the clinical applications of TMP, elucidates its potential mechanisms in protecting I/R injury, provides strategies to improve bioavailability, which presents a comprehensive understanding of the important compound. Hopefully, the information and knowledge from this review can help researchers and physicians to better improve the applications of TMP in the clinic.
Asunto(s)
Pirazinas , Daño por Reperfusión , Pirazinas/uso terapéutico , Pirazinas/farmacología , Humanos , Daño por Reperfusión/tratamiento farmacológico , Animales , Ligusticum/químicaRESUMEN
Based on the association network of "drug pair-disease", the effect characteristics of Astragali Radix-Chuanxiong Rhizoma drug pair in the treatment of ischemic stroke(IS) with Qi deficiency and blood stasis and the matching mechanism of the two were explored. Through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction Database, the effective chemical components of the drug pair were screened, and the candidate targets were predicted. Databa-ses such as GeneCards, DrugBank, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD) were searched to obtain gene targets related to IS. Through STRING and Cytoscape 3.9.1 software, the protein-protein interaction(PPI) network was constructed by using the interaction information of disease syndrome-related genes and candidate targets of drug pairs, and the core targets were screened according to the network topological feature values. Based on the Metascape platform and DAVID database, the biomolecular interaction information was integrated to analyze the Kyoto Encyclopedia of Genes and Genomes(KEGG) and mine biological functions, so as to further explore the mechanism of action and compatibility characteristics of Astragali Radix-Chuan-xiong Rhizoma. The results showed that the candidate biological process was mainly involved in the regulation of functional modules such as immune, blood circulation, neurotransmitter, and oxidative stress, and it was enriched in lipid and atherosclerosis, calcium signaling pathway, and platelet activation. Astragali Radix and Chuanxiong Rhizoma have their own characteristics. Astragali Radix has a regulatory response to growth factors while maintaining the body's immune balance, while Chuanxiong Rhizoma mainly improves the circulatory system and participates in hormone metabolism, so as to indicate the compatibility mechanism of Astragali Radix-Chuanxiong Rhizoma drug pair for multi-target and multi-pathway synergistic treatment of IS. Through further experimental verification, it was found that the Astragali Radix-Chuanxiong Rhizoma drug pair could significantly down-regulate the expression of key targets including TLR4, NF-κB, IL-1ß, F2R, PLCß1, and MYLK. This study preliminarily reveals that the Astragali Radix-Chuanxiong Rhizoma drug pair may play the three replenishing effects of promoting blood circulation, benefiting Qi, and clearing collaterals by correcting immune di-sorders, blood circulation disorders, and inflammation, which provide support for the clinical research on the subsequent improvement of Qi deficiency and blood stasis in the treatment of IS and provide a new idea for the analysis of modern biological connotation of the compatibility of seven emotions of traditional Chinese medicine.
Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Mapas de Interacción de Proteínas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Astragalus propinquus/química , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Rizoma/química , Ligusticum/químicaRESUMEN
This study aims to decipher the mechanism of tetramethylpyrazine(TMP) in regulating the migration of neural stem cells(NSCs) in the rat model of middle cerebral artery occlusion(MCAO) via the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)/C-X-C motif chemokine receptor 4(CXCR4) pathway. SD rats were randomized into sham, MCAO(model), and tetramethylpyrazine(TMP, 20 mg·kg~(-1) and 40 mg·kg~(-1)) groups. The neurological impairment was assessed by the modified neurological severity score(mNSS). The immunofluorescence assay was employed to detect the cells stained with both 5-bromodeoxyuridine(BrdU) and doublecortin(DCX) in the brain tissue. The effect of TMP on the migration of C17.2 cells was observed. Western blot was employed to determine the protein levels of Nrf2, HO-1, p62, NAD(P)H quinone oxidoreductase 1(NQO1), stromal cell-derived factor 1(SDF-1), and CXCR4 in the brain tissue and C17.2 cells. The results showed that after 7 days and 21 days of mode-ling, the mNSS and BrdU~+/DCX~+ cells were increased, and the expression of Nrf2 and CXCR4 in the brain tissue was up-regulated. Compared with the model group, TMP(40 mg·kg~(-1)) reduced the mNSS, increased the number of BrdU~+/DCX~+ cells, and up-regulated the expression of Nrf2, CXCR4, and SDF-1. In addition, TMP promoted the migration of C17.2 cells and up-regulated the expression of p62, Nrf2, HO-1, and NQO1 in a time-and dose-dependent manner. The expression was the highest at the time point of 12 h in the TMP(50 µg·mL~(-1)) group(P<0.01). In conclusion, TMP activates the Nrf2/HO-1/CXCR4 pathway to promote the migration of NSCs to the ischemic area, thus exerting the therapeutic effect on the ischemia-reperfusion injury. This study provides experimental support for the application of TMP in ischemic stroke.
Asunto(s)
Movimiento Celular , Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Células-Madre Neurales , Pirazinas , Ratas Sprague-Dawley , Receptores CXCR4 , Animales , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Pirazinas/farmacología , Ratas , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Movimiento Celular/efectos de los fármacos , Masculino , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Proteína Doblecortina , Transducción de Señal/efectos de los fármacos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , HumanosRESUMEN
This study aimed to investigate the intervention effect of tetramethylpyrazine(TMP) combined with transplantation of neural stem cells(NSCs) on middle cerebral artery occlusion(MCAO) rat model and to explore the mechanism of TMP combined with NSCs transplantation on ischemic stroke based on the regulation of stem cell biological behavior. MCAO rats were randomly divided into a model group, a TMP group, an NSCs transplantation group, and a TMP combined with NSCs transplantation group according to neurological function scores. A sham group was set up at the same time. The neurological function score was used to evaluate the improvement of neurological function in MCAO rats after TMP combined with NSCs transplantation. The proliferation, migration, and differentiation of NSCs were evaluated by BrdU, BrdU/DCX, BrdU/NeuN, and BrdU/GFAP immunofluorescence labeling. The protein expression of stromal cell-derived factor 1(SDF-1), C-X-C motif chemokine receptor 4(CXCR4), as well as oxidative stress pathway proteins nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(KEAP1), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1) was detected by Western blot to study the migration mechanism of TMP combined with NSCs. The results showed that TMP combined with NSCs transplantation significantly improved the neurological function score in MCAO rats. Immunofluorescence staining showed a significant increase in the number of BrdU~+, BrdU~+/DCX~+, BrdU~+/NeuN~+, and BrdU~+/GFAP~+ cells in the TMP, NSCs transplantation, and combined treatment groups, with the combined treatment group showing the most significant increase. Further Western blot analysis revealed significantly elevated expression of CXCR4 protein in the TMP, NSCs transplantation, and combined treatment groups, along with up-regulated protein expression of Nrf2, HO-1, and NQO1, and decreased KEAP1 protein expression. This study showed that both TMP and NSCs transplantation can promote the recovery of neurological function by promoting the proliferation, migration, and differentiation of NSCs, and the effect of TMP combined with NSCs transplantation is superior. The mechanism of action may be related to the activation of the Nrf2/HO-1/CXCR4 pathway.
Asunto(s)
Isquemia Encefálica , Proteína Doblecortina , Factor 2 Relacionado con NF-E2 , Células-Madre Neurales , Pirazinas , Ratas Sprague-Dawley , Receptores CXCR4 , Animales , Pirazinas/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/trasplante , Células-Madre Neurales/metabolismo , Ratas , Masculino , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Trasplante de Células Madre/métodos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Humanos , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/terapia , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genéticaRESUMEN
This study aims to optimize the conditions for the formation of neutrophil extracellular traps(NETs) in vitro, so as to establish a relatively stable experimental research platform. Different conditions were compared, including commonly used laboratory animals(rats and mice) and a variety of cell sources(bone marrow neutrophils and peripheral blood neutrophils separated by percoll density gradient centrifugation). Different inducers like lipopolysaccharide(LPS) and phorbol 12-myristate 13-acetate(PMA) were used for induction in vitro. Myeloperoxidase(MPO)/citrullinated histone H3(CitH3)/DAPI immunofluorescence and cell free DNA(cf-DNA) content determination were used for comprehensive evaluation to screen the optimal conditions for the formation of NETs induced in vitro. Furthermore, the stability of the selected conditions for inducing the formation of NETs in vitro was evaluated by tetramethylpyrazine(TMP), an active component in Chinese herbal medicines. The results showed that coated poly-D-lysine(PDL) induced the formation of NETs in bone marrow neutrophils of mice to a certain extent. Both LPS and PMA significantly up-regulated the protein levels of MPO and CitH3 in mouse bone marrow neutrophils and elevated the cfDNA level in the supernatant of rat peripheral blood neutrophils. The cfDNA level in the PMA-induced group increased more significantly than that in the LPS-induced group(P<0.05). The results of immunofluorescence staining showed that the expression of MPO and CitH3 in mouse bone marrow neutrophils, rat bone marrow neutrophils, and rat peripheral blood neutrophils were significantly increased after PMA induction, especially in rat peripheral blood neutrophils. TMP significantly down-regulated the protein levels of MPO, CitH3, and neutrophil elastase(NE) in rat peripheral blood neutrophils induced by PMA. In conclusion, treating the peripheral blood neutrophils of rats with PMA is the optimal condition for inducing the formation of NETs in vitro. This study provides an optimal platform for in vitro studies based on NETs and a basis for studying the effects of traditional Chinese medicines targeting NETs.
Asunto(s)
Trampas Extracelulares , Neutrófilos , Peroxidasa , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Animales , Neutrófilos/efectos de los fármacos , Neutrófilos/citología , Ratones , Ratas , Peroxidasa/metabolismo , Peroxidasa/genética , Acetato de Tetradecanoilforbol/farmacología , Masculino , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Histonas/metabolismo , Histonas/genética , HumanosRESUMEN
Based on the sarcoma receptor coactivator(Src)/phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, the mechanism of action of bulleyaconitine A in the treatment of bone destruction of experimental rheumatoid arthritis(RA) was explored. Firstly, key targets of RA bone destruction were collected through GeneCards, PharmGKB, and OMIM databa-ses. Potential targets of bulleyaconitine A were collected using SwissTargetPrediction and PharmMapper databases. Next, intersection targets were obtained by the Venny 2.1.0 platform. Protein-protein interaction(PPI) network and topology analysis were managed by utilizing the STRING database and Cytoscape 3.8.0. Then, Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted in the DAVID database. AutoDock Vina was applied to predict the molecular docking and binding ability of bulleyaconitine A with key targets. Finally, a receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model was established in vitro. Quantitative real-time polymerase chain reaction(qRT-PCR) was used to detect the mRNA expression levels of related targets, and immunofluorescence and Western blot were adopted to detect the protein expression level of key targets. It displayed that there was a total of 29 drug-disease targets, and Src was the core target of bulleyaconitine A in anti-RA bone destruction. Furthermore, KEGG enrichment analysis revealed that bulleyaconitine A may exert an anti-RA bone destruction effect by regulating the Src/PI3K/Akt signaling pathway. The molecular docking results showed that bulleyaconitine A had better bin-ding ability with Src, phosphatidylinositol-4,5-diphosphate 3-kinase(PIK3CA), and Akt1. The result of the experiment indicated that bulleyaconitine A not only dose-dependently inhibited the mRNA expression levels of osteoclast differentiation-related genes cathepsin K(CTSK) and matrix metalloproteinase-9(MMP-9)(P<0.01), but also significantly reduced the expression of p-c-Src, PI3K, as well as p-Akt in vitro osteoclasts(P<0.01). In summary, bulleyaconitine A may inhibit RA bone destruction by regulating the Src/PI3K/Akt signaling pathway. This study provides experimental support for the treatment of RA bone destruction with bulleyaconitine A and lays a foundation for the clinical application of bulleyaconitine A.
Asunto(s)
Aconitina/análogos & derivados , Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Simulación del Acoplamiento Molecular , Transducción de Señal , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , ARN Mensajero , Medicamentos Herbarios Chinos/farmacologíaRESUMEN
OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that the HMGB1flox/floxElf5cre/+ mouse displays fetal growth restriction, characterized by decreased placental and fetal weight and impaired bone development. The absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.
Asunto(s)
Autofagia , Proteína HMGB1 , Sistema de Señalización de MAP Quinasas , Placenta , Trofoblastos , Animales , Femenino , Humanos , Ratones , Embarazo , Autofagia/fisiología , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Noqueados , Placenta/metabolismo , Placentación/fisiología , Trofoblastos/metabolismo , Trofoblastos/fisiología , MasculinoRESUMEN
Molecule interacting with CasL 1 (MICAL1) is a crucial protein involved in cell motility, axon guidance, cytoskeletal dynamics, and gene transcription. This pan-cancer study analyzed MICAL1 across 33 cancer types using bioinformatics and experiments. Dysregulated expression, diagnostic potential, and prognostic value were assessed. Associations with tumor characteristics, immune factors, and drug sensitivity were explored. Enrichment analysis revealed MICAL1's involvement in metastasis, angiogenesis, metabolism, and immune pathways. Functional experiments demonstrated its impact on renal carcinoma cells. These findings position MICAL1 as a potential biomarker and therapeutic target in specific cancers, warranting further investigation into its role in cancer pathogenesis.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Movimiento Celular , Biología Computacional , Citoesqueleto , Neoplasias Renales/genética , Calponinas , Oxigenasas de Función Mixta , Proteínas de MicrofilamentosRESUMEN
Background: Plant essential oils have long been regarded as repositories of antimicrobial agents. In recent years, they have emerged as potential alternatives or supplements to antimicrobial drugs. Although literature reviews and previous studies have indicated that cinnamon essential oil (CIEO) and its major component, cinnamaldehyde (CID), possess potent antibacterial activities, their antibacterial mechanisms, especially the in vivo antibacterial mechanisms, remain elusive. Methods: In this study, we utilized the in vivo assessment system of Caenorhabditis elegans (C. elegans) to investigate the effects and mechanisms of high dose (100 mg/L) and low dose (10 mg/L) CIEO and CID in inhibiting Pseudomonas aeruginosa (P. aeruginosa). In addition, we also examined the in vitro antibacterial abilities of CIEO and CID against other common pathogens including P. aeruginosa and 4 other strains. Results: Our research revealed that both high (100 mg/L) and low doses (10 mg/L) of CIEO and CID treatment significantly alleviated the reduction in locomotion behavior, lifespan, and accumulation of P. aeruginosa in C. elegans infected with the bacteria. During P. aeruginosa infection, the transcriptional expression of antimicrobial peptide-related genes (lys-1 and lys-8) in C. elegans was upregulated with low-dose CIEO and CID treatment, while this trend was suppressed at high doses. Further investigation suggested that the PMK-1 mediated p38 signaling pathway may be involved in the regulation of CIEO and CID during nematode defense against P. aeruginosa infection. Furthermore, in vitro experimental results also revealed that CIEO and CID exhibit good antibacterial effects, which may be associated with their antioxidant properties. Conclusion: Our results indicated that low-dose CIEO and CID treatment could activate the p38 signaling pathway in C. elegans, thereby regulating antimicrobial peptides, and achieving antimicrobial effects. Meanwhile, high doses of CIEO and CID might directly participate in the internal antimicrobial processes of C. elegans. Our study provides research basis for the antibacterial properties of CIEO and CID both in vivo and in vitro.
RESUMEN
Renal interstitial fibrosis/tubular atrophy (IF/TA) is a prominent pathological feature of chronic allograft dysfunction (CAD). Our previous study has demonstrated that epithelial-mesenchymal transition (EMT) plays a significant role in shaping the development of IF/TA. Nuclear SET domain (NSD2), a histone methyltransferase catalyzing methylation at lysine 36 of histone 3, is crucially involved in the development and progression of solid tumors. But its role in the development of renal allograft interstitial fibrosis has yet to be elucidated. Here, we characterize NSD2 as a crucial mediator in the mouse renal transplantation model in vivo and a model of tumor necrosis factor-α (TNF-α) stimulated-human renal tubular epithelial cells (HK-2) in vitro. Functionally, NSD2 knockdown inhibits EMT, dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in mice. Conversely, NSD2 overexpression exacerbates fibrosis-associated phenotypes and mitochondrial fission in tubular cells. Mechanistically, tubular NSD2 aggravated the Drp-1 mediated mitochondrial fission via STAT1/ERK/PI3K/Akt signaling pathway in TNF-α-induced epithelial cell models. Momentously, mass spectrometry (MS) Analysis and site-directed mutagenesis assays revealed that NSD2 interacted with and induced Mono-methylation of STAT1 on K173, leading to its phosphorylation, IMB1-dependent nuclear translocation and subsequent influence on TNF-α-induced EMT and mitochondrial fission in NSD2-dependent manner. Collectively, these findings shed light on the mechanisms and suggest that targeting NSD2 could be a promising therapeutic approach to enhance tubular cell survival and alleviate interstitial fibrosis in renal allografts during CAD.